Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Support of a wavetable based sound synthesis in a multiprocessor environment

a multi-processor environment and wavetable technology, applied in computing, electrophonic musical instruments, instruments, etc., can solve the problems of insufficient computational power and insufficient memory space for storing raw materials, and achieve the effect of reducing the memory requirements of the second processor, improving polyphony, and being easily adapted to a us

Inactive Publication Date: 2007-09-25
WSOU INVESTMENTS LLC
View PDF10 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0027]It is an advantage of the invention that it allows to reduce the memory requirements in the second processor significantly, since only an amount of samples somewhat larger than the amount required for one frame has to be stored at a time by the second processor. Alternatively or in addition, the invention allows for the same reason a much higher polyphony. Further, it allows the use of wavetable data of any size.
[0028]The invention can be easily adapted to a use with any model for the pitch-shift variation during one frame.
[0029]In an embodiment of the invention, the first and the second processor communicate through a shared memory space in which one processor allows to write data for the other processor and to read data previously written there by the other processor. In this case, the first processor provides the samples selected for the next frame to the second processor by writing them into the shared memory space, and the second processor reads the samples from the shared memory at an appropriate point of time. The second processor further records in this case the number Kk of samples required in generating the kth output audio frame into the shared memory for making it available to the first processor. The proposed software code copies in this case the selected samples directly into the shared memory, from where they can be fetched by the first processor at an appropriate moment.
[0030]The samples for one frame can be provided by the first processor in particular in one block per frame.
[0031]The data transfer from a shared memory to the memory addressable only by the second processor can be efficiently carried out as a single data block transfer per frame by taking advantage of a direct memory access (DMA) transfer, if available.
[0032]It is of importance to note that although the present invention describes in detail the problems related with streaming wavetable data for a single voice, it can be easily extrapolated to a plurality of voices. Thus, any block of data transferred from the first processor to the second processor may include the necessary wavetable data samples needed by all active voices rather than by a single voice, reducing thereby the number of such block data transfers to one per frame.

Problems solved by technology

It provides in particular a possibility of implementing a wavetable sound synthesis making use of two processors, where a first processor is equipped with sufficient memory space to store the wavetable data, but insufficient computational power to process it, and where a second processor has the computational power to process the data for wavetable sound synthesis, but has insufficient memory space to store the raw wavetable data.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Support of a wavetable based sound synthesis in a multiprocessor environment
  • Support of a wavetable based sound synthesis in a multiprocessor environment
  • Support of a wavetable based sound synthesis in a multiprocessor environment

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0043]FIG. 1 schematically presents a wavetable based sound synthesizing system according to the invention. The system can be for example a mobile telecommunication terminal 1 or a part of such a terminal and comprises an MCU 10 as a first processor, a DSP 20 as a second processor and a shared memory 30. In this system, raw wavetable data stored in the MCU 10 is streamed through the shared memory 30 from the MCU 10 to the DSP 20 in a way which allows the DSP 20 to produce audio output 40 by means of a wavetable sound synthesis procedure.

[0044]The MCU 10 includes to this end a processing component 11 and a memory 12. The DSP 20 comprises equally a processing component 21 and a memory 22. The memory 12 of the MCU 10 is significantly larger than the memory 22 of the DSP 20, while the computational power of the processing component 21 of the DSP 20 is significantly larger than the computational power of the processing component 11 of the MCU 10, as known from conventional mobile telecom...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to methods for use in a wavetable based sound synthesis, wherein a first processor stores wavetable data and wherein a second processor generates an output audio signal frame-by-frame based on samples of the wavetable data. One method comprises at the first processor selecting samples of the stored wavetable data, which are expected to be required at the most at the second processor for generating a next output audio frame. The selection is based on a model of a pitch-shift evolution during a single frame and on the number of samples which have been used so far by the second processor. The selected samples are made available to the second processor. Another method allows the second processor to make use of the provided samples. The invention relates equally to corresponding processors, to a corresponding wavetable based sound synthesis system, to a corresponding device and to corresponding software program products.

Description

FIELD OF THE INVENTION[0001]The invention relates to the field of wavetable based sound synthesis and more specifically to methods for use in a wavetable based sound synthesis, wherein a first processor stores wavetable data and wherein a second processor generates an output audio signal frame-by-frame based on samples of this wavetable data. The invention relates equally to corresponding processors, to a corresponding wavetable based sound synthesis system, to a corresponding device and to corresponding software program products.BACKGROUND OF THE INVENTION[0002]Wavetable based sound synthesis is a popular sound synthesis for use in mobile telecommunication terminals. It has the advantage that a very high sound synthesis quality is achieved with a rather simple algorithm, which basically relies on processing and playing back previously recorded audio samples, called wavetables.[0003]For the purpose of the music synthesis, the wavetables store the tones of real instruments that are r...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): G06F17/00G10H7/00
CPCG10H7/004
Inventor TICO, MARIUSSEPPANEN, JARNOHAMALAINEN, MATTI S.
Owner WSOU INVESTMENTS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products