Apparatus and method for penetrating oilbearing sandy formations, reducing skin damage and reducing hydrocarbon viscosity

a technology of oilbearing sandy formations and apparatus, applied in the direction of explosive charges, weapons, projectiles, etc., can solve the problem of high energy consumption, and achieve the effect of ensuring aluminum hea

Inactive Publication Date: 2005-06-02
OWEN OIL TOOLS
View PDF14 Cites 63 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012] The present invention provides significant advantages over prior art devices and methods, such as those described in the Liu patent application. In preferred embodiments of the present invention, heating of the aluminum is more assured due to the collapse of air voids present in the unconsolidated aluminum powder. Air void collapse and high temperatures are developed locally in the vicinity of alumi

Problems solved by technology

This, in turn, releases a high amount of energy by cau

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Apparatus and method for penetrating oilbearing sandy formations, reducing skin damage and reducing hydrocarbon viscosity
  • Apparatus and method for penetrating oilbearing sandy formations, reducing skin damage and reducing hydrocarbon viscosity
  • Apparatus and method for penetrating oilbearing sandy formations, reducing skin damage and reducing hydrocarbon viscosity

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0021]FIG. 1 illustrates an exemplary shaped charge 10 that is constructed in accordance with the present invention. The shaped charge 10 includes an outer charge casing, or case, 12 that is typically fashioned of metal. The casing 12 defines a charge cavity 14 that is generally hemispherical and presents an open forward end 16. At the rear end of the casing 12, a small aperture 18 is disposed. A small amount of booster is usually placed in the aperture 18. A detonator 20 is retained adjacent to the aperture 18. The detonator 20 typically comprises a detonation cord, or other items known in the art for initiation of a shaped charge. An explosive charge 22 is disposed within the charge cavity 14 and within the forward portion of the aperture 18 so as to be in contact with the booster which is, in turn, in contact with or in close proximity with the detonator 20. The explosive material may comprise RDX (Hexogen, Cyclotrimethylenetrinitramine), HMX (Octogen, Cyclotetramethylenetetranit...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A shaped charge and a method of using such to provide for large and effective perforations in oil bearing sandy formations while causing minimal disturbance to the formation porosity is described. This shaped charge uses a low-density liner having a filler material that is enclosed by outer walls made, preferably, of plastic or polyester. The filler material is preferably a powdered metal or a granulated substance, which is left largely unconsolidated. The preferred filler material is aluminum powder, or aluminum particles, that are coated with an oxidizing substance, such as TEFLON®, permitting a secondary detonation reaction inside the formation following jet penetration. The filled liner is also provided with a metal cap to aid penetration of the gun scallops, the surrounding borehole casing and the cement sheath. The metal cap forms the leading portion of the jet, during detonation. The remaining portion of the jet is formed from the low-density filler material, thereby resulting in a more particulated jet. The jet results in less compression around the perforation tunnel and less skin damage to the proximal end of the perforation tunnel.

Description

BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The invention relates generally to the design of shaped charges. In particular aspects, the invention relates to improved liner design for shaped charges and the use of improved shaped charges within a wellbore in order to better penetrate oil bearing sandy formations with minimal skin damage and to reduce hydrocarbon viscosity. Such a shaped charge features a composite jet that produces a large diameter hole in the formation, barely disturbing the formation properties. Such charges will greatly benefit gravel-packing completions. [0003] 2. Description of the Related Art [0004] Shaped charges are used in wellbore perforating guns. A shaped charge typically consists of an outer housing, an explosive portion shaped as an inverted cone, and a metal liner that retains the explosive portion within the housing. When oil-bearing sands are perforated by conventional shaped charges, the full oil-producing potential of the fo...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): F42B1/032
CPCF42B1/032F42B1/028
Inventor PRATT, DAN W.CHAWLA, MAMMOHAN SINGH
Owner OWEN OIL TOOLS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products