Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Food dough cutting method and cutting apparatus

a cutting method and cutting device technology, applied in the field of cutting methods and cutting devices, can solve the problems of unstable quality of food dough produced, low productivity, and uneven width on both sides of food dough strips, and achieve the effect of preventing oversupply, preventing the occurrence of large differences in weight, and reducing production costs

Inactive Publication Date: 2008-11-27
RHEON AUTOMATIC MASCH CO LTD
View PDF16 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0015]With this invention, when aligning the center position of the width of the band shaped food dough and conveying the food dough, alignment is not performed by aligning the food dough to a set position without moving the center position with respect to the cutting members as was done conventionally, but rather the center position and a set position, which is calculated by a control device based on the varying width dimension of the food dough and the varying cut lengths of food dough pieces that are divided from food dough strips, are aligned, so even when the characteristics of the dough, such as the width dimension, thickness or density of the dough are not uniform, it is possible to perform control so that weight of each of the food dough strips that is conveyed per unit time is mostly the same.
[0016]Also, with this invention, when dividing the band shaped food dough into multiple food dough strips, the plurality of cutting members, for example, rotating blades, are not arranged at fixed specified intervals as was done conventionally, but rather the interval between the cutting members is adjusted to an interval that is calculated by a control device based on the varying width dimension of the food dough and the varying cut lengths of food dough pieces that are divided from food dough strips, so even when the characteristics of the dough, such as the width dimension, thickness or density of the dough are not uniform, it is possible to perform control so that weight of each of the food dough strips that is conveyed per unit time is mostly the same.
[0017]In other words, with this invention, when dividing the conveyed food dough into multiple food dough strips along the conveyance direction, it is possible to suppress the occurrence of large differences in the weight of each of the food dough strips conveyed per unit time even when the characteristics of the dough, such as the width dimension, thickness or density of the dough are not uniform, so it is possible to make the number of cuts made per unit time (number of cuts) when cutting each of the food dough strips into food dough pieces having a specified weight the same, and thus it is possible to prevent a build up (oversupply), or undersupply of food dough pieces in the secondary formation section that follows.

Problems solved by technology

However, when dividing band shaped food dough whose width varies in the conveyance direction into multiple food dough strips, the width on both sides of a food dough strip is not fixed, or in other words, strip shaped food dough having a varying width is obtained.
Therefore, there is a problem in that productivity drops when it is necessary to discard the strip shaped food dough on both sides as unnecessary dough, and quality of the produced food dough becomes unstable and decreases when the strip shaped food dough on both sides is combined and remixed with the raw material.
However, when the width of the food dough constantly varies in the conveyance direction, or when the characteristics of the dough, such as the thickness or density, is not uniform in part of the dough, or particularly in the section on both sides, problems may occur in that when the food dough formation system divides the food dough into two strips of food dough whose width is constantly changing, large differences in the weight of the food dough that is conveyed per unit time occur, and when cutting each strip of food dough into pieces having a specified weight, extreme differences may occur in the number of cuts for each strip per unit time (for example, 1 minute), and the pieces of food dough become backed up (over supplied) in the secondary formation, or are not supplied.
Also, in the food dough formation system described above, when cutting the food dough that has been divided into two strips into pieces of food dough, the shape of the food dough pieces is formed into a horizontal rectangular shape (strips) as the weight of the dough decreases, and is not a suitable shape for secondary formation.
Therefore, a large difference occurs in the weight conveyed per unit time between the center food dough strip and the food dough strips on both sides, or between the food dough strips on both sides, and when cutting each of the food dough strips into food dough pieces having a specified weight, extreme differences occur in the number of cuts per unit time for each food dough strip, so during secondary formation, a problem may occur in that the food dough strips will become backed up (over supplied), or will not be supplied.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Food dough cutting method and cutting apparatus
  • Food dough cutting method and cutting apparatus
  • Food dough cutting method and cutting apparatus

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0024]The cutting device 1 of the invention will be explained using the drawings. FIG. 1 is a top view of a cutting device 1. FIG. 2 is a front view as seen in the direction of section A-A of FIG. 1. FIG. 3 is a left side view of FIG. 2.

[0025]As shown in FIG. 1 to FIG. 3, the cutting device 1 comprises a multiple-strip cutting device 2 that cuts band shaped food dough F that is conveyed by a conveyor 3 along the conveyance direction S into four food dough strips F1, F2, F3, F4. The multiple-strip cutting device 2 comprises: three circular rotating blades 5 as the cutting members; a cutting member interval adjustment mechanism 7 that adjusts the installation interval between the rotating blades 5; and a conveyor roller 9 that conveys the food dough F against the rotating blades 5. Also, the multiple-strip cutting device 2 is installed on opposing side plates 13 that are fastened to the side surfaces of the conveyer frame of the conveyor 3.

[0026]The cutting member interval adjustment ...

second embodiment

[0058]In this second embodiment, the reference position D is located between the rotating blades 5 on both sides that are supported by the rotating shaft 17 by way of movable support members 26, 27. Also, the interval W2 between the rotating blade 5 and rotating blade 48 that cut the food dough strip F2, is taken to be equal to the interval W3 between the rotating blade 48 and rotating blade 5 that cut the food dough strip F3.

[0059]The interval WC between the rotating blades 5 on both sides is expressed as (W2+W3), and can be calculated from Equation 1 as two times the value of the interval WD between the rotating blades 5 that was explained in the first embodiment (WC=(W2+W3)=2×WD). Therefore, it is possible to control the rotation of the control motor M1 by a correction instruction from the control device 43 that is based on the interval WD, and to adjust the position (interval) of the rotating blades 5 on both sides by way of the rotating shaft 17 and movable support members 26, ...

third embodiment

[0067]In the case of the cutting device that is disclosed in Japanese patent application 2001-95468, when dividing food dough into two food strips, the center position C of the width of the food dough F is aligned without displacement with respect to the cutting position of the cutting member as a reference position, and is divided into equal parts so that the width dimensions of the food dough strips F1, F2 on both sides are symmetrical. However, when the characteristics of the food dough, such as the thickness or density of both side portions of the food dough that is divided as described above, become non uniform, the width dimensions W1, W2 of the food dough strips F1, F2 on both sides are obtained by dividing the width dimension W of the food dough F into two equal divisions, and when cutting the food dough strips F1, F2 on both sides into food dough pieces f1, f2 having a specified weight, the cut lengths L1, L2 may not be the same length. Therefore, in this third embodiment o...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Weightaaaaaaaaaa
Lengthaaaaaaaaaa
Widthaaaaaaaaaa
Login to View More

Abstract

The object of the present invention is to provide a food dough cutting method and cutting device thereof capable of forming conveyed food dough strips that have nearly identical weight per unit time when dividing band shaped food dough into multiple food dough strips in the conveyance direction, and is further capable of performing the same number of cuts for each food dough strip when cutting each food dough strip along the width direction into food dough pieces having a specified weight.The conveyed food dough is aligned to a position that is displaced by just an alignment displacement amount with respect to a reference position that is based on the installation position of cutting members. The alignment displacement amount is calculated based on the ratio of the width dimension of the food dough and the lengths of food dough pieces that are cut from food dough strips on both sides.

Description

RELATED APPLICATIONS[0001]This application claims the benefit under 35 U.S.C. § 119 of Japanese patent application No. 2006-305993, filed Nov. 10, 2006.BACKGROUND OF THE INVENTION[0002]This invention relates to a cutting method and cutting device for separating conveyed band shaped food dough into multiple strips in the conveyance direction.[0003]As means for separating a block of food dough, such as mixed and kneaded bread dough, into a specified amount (for example 40 g) of food dough pieces, there is a device that forms continuous band shaped food dough from a block of food dough, and divides that food dough into rectangular pieces, for example as the food dough is conveyed by a conveying device.[0004]For example, the bread dough divider that is disclosed in Japanese patent application H4-66044 comprises: a belt conveyor that conveys the block of bread dough, an expansion roller that expands that block of bread dough to a near uniform thickness, a plurality of straight cutting ro...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B26D7/06A23P1/00A21C5/00
CPCA21C3/10A21C9/085A21C11/10Y10T83/659Y10T83/2192Y10T83/2137Y10T83/145Y10T83/7876
Inventor TAKAMA, AKINORIKOMINATO, SUSUMUUENO, HIROSHI
Owner RHEON AUTOMATIC MASCH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products