Vehicle communications via wireless access vehicle environment

a vehicle environment and wireless access technology, applied in the field of vehicle communications via wireless access vehicle environment, to achieve the effect of enhancing road safety and little or no hardware cos

Inactive Publication Date: 2014-07-10
PAXGRID TELEMETRIC SYST
View PDF2 Cites 128 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0041]The present invention is therefore intended to create a WAVE-enabled technology which may be deployed to both retrofit existing vehicles as well to allow OEMs to integrate WAVE in new vehicles with user interface functionality that can be harnessed from third-party devices. This technology may also incorporate the capabilities described in U.S. Pat. No. 6,263,268, and U.S. Pat. No. 7,593,999. However, it should enable existing vehicles to meet the same standards of performance that will be applied to newly manufactured vehicles, without engendering any complications that would compromise the objective of WAVE, which is enhanced road safety. This is accomplished through the creation of new mechanisms which can be integrated into an after-market device with little or no hardware cost beyond what is required to comply with IEEE 1609.

Problems solved by technology

Since authorization to use intelligent roadways would normally be restricted to WAVE-enabled vehicles, then, if the technology is limited to new manufactured vehicles, it may take 10-15 years from the first model year of WAVE-enabled vehicles before the benefits can begin to be realized.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Vehicle communications via wireless access vehicle environment
  • Vehicle communications via wireless access vehicle environment
  • Vehicle communications via wireless access vehicle environment

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0062]FIG. 1 provides an overview of the concepts described in the present invention, in terms of the system components and their relationships to one another. On-board the vehicle 10 is an OBU 12, which may be integrated in a new vehicle or retrofitted as an aftermarket device or app, such as in a smart phone (SP) 14, a PDA, a tablet, a dash-mounted unit, a GPS receiver, etc. The OBU includes known circuitry such as one or more processors, ROM, RAM, interfaces, transmitter, receiver, antenna(s), together with computer program code useful in carrying out functions to be described below. The OBU 12 interacts with an RSU 16 according to the specifications for the complete WAVE protocol stack via, for example, transmitters and receivers in each of the OBU and the RSU. The RSU also includes known circuitry such as one or more processors, ROM, RAM, interfaces, transmitter, receiver, antenna(s), together with computer program code useful in carrying out functions tom be described below. T...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Vehicle Communications using IEEE 802.11p WAVE functionality includes structure and method whereby a smart phone (SP) linked to an On Board Unit (OBU) having WAVE functionality, and incorporating Automotive Telemetry Protocol (ATP), has at least one processor to configure the SP as a GUI for the OBU, and to enable WAVE authentication of the SP through a networked Road Side Unit. Preferably, the OBU opens, after a command from an ATP Client, a virtual connection for streaming data between the vehicle data bus and a remote server providing an automotive scan tool. Also preferably, the SP may use either cellular or IEEE 802.11 control signals to trialaterate its geographic position with greater accuracy than GPS, and to hand off the geo-position fixes to the OBU. Accumulated geo-location information may be reported to a remote server, providing a centralized geographic trend analysis of plural SPs operating with OBUs.

Description

[0001]This patent application claims benefit of U.S. Provisional Patent Applications: 61 / 750,630, filed Jan. 9, 2013; and 61 / 883,594, filed Sep. 27, 2013, the contents of each of which are incorporated herein by reference.BACKGROUND OF THE INVENTION[0002]The automobile industry has spent the last ten years evolving standards around which intelligent vehicle-vehicle (V2V) communications technology can be integrated into new products and deployed in conjunction with roadside infrastructure that will transform the way vehicles operate and co-operate, on the roadways.[0003]Following the recommendation of the Intelligent Transportation Society of America (ITSA) in 2002, the IEEE created a task group in 2004 with the mandate of amending the IEEE 802.11 wireless LAN specification in order to accommodate the mobility, speed and range of vehicular network nodes. The group produced an amended specification entitled IEEE 802.11p in 2007 (incorporated herein by reference).[0004]In 802.11p, netw...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H04W4/04G07C5/00H04W4/40H04W4/48
CPCG07C5/0808H04W4/046G07C5/008H04W12/06H04W48/16H04W84/12H04W4/48H04L67/12H04W4/40
Inventor NATHANSON, MARTIN D.
Owner PAXGRID TELEMETRIC SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products