Assisted takeoff

a technology of assisted takeoff and launching gear, which is applied in the direction of instruments, electric controllers, launching/towing gear, etc., to achieve the effect of increasing the overall propulsion of the movable obj

Active Publication Date: 2015-10-01
SZ DJI TECH CO LTD
View PDF4 Cites 12 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]The output may be increased by a constant value. Increasing the output to the actuator may result in increasing overall propulsion of the movable object. The command may be provided by a remote terminal. Prior to receiving the command to increase the altitude of the movable object, a command may be received to start the actuator and placing the actuator in an idle mode. The method may also include reducing the output to the actuator until the actuator is in an idle mode when the command to increase the altitude does not exceed a predetermined value.
[0016]The output may be increased by a constant value. Increasing the output to the actuator may result in increasing overall propulsion of the movable object. The command may be provided by a remote terminal. The receiver may be configured to receive a command to start the actuator and place the actuator in an idle mode, prior to receiving the command to increase the altitude of the movable object. The output to the actuator may be reduced until the actuator is in an idle mode when the command to increase the altitude does not exceed a predetermined value.
[0022]The output may be increased by a constant value. Increasing the output to the actuator may result in increasing overall propulsion of the movable object. The method may also include receiving a command to increase an altitude of the movable object. The command may be provided by a remote terminal. Prior to receiving the command to increase an altitude of the movable object, a command may be received to start the actuator and placing the actuator in an idle mode. The method may include reducing the output to the actuator until the actuator is in an idle mode when the command to increase the altitude does not exceed a predetermined value.
[0028]The output may be increased by a constant value. Increasing the output to the actuator may result in increasing overall propulsion of the movable object. A receiver may be provided that is configured to receive a command to increase an altitude of the movable object. The command may be provided by a remote terminal. The receiver may be configured to receive a command to start the actuator and placing the actuator in an idle mode, prior to receiving the command to increase an altitude of the movable object. The output to the actuator may be reduced until the actuator is in an idle mode when the command to increase the altitude does not exceed a predetermined value.

Problems solved by technology

Existing proportional-integral-derivative (PID) controllers, due to memory effects of integration, will result in a ground force, which may cause the integration expression to be wrong and cause instability.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Assisted takeoff
  • Assisted takeoff
  • Assisted takeoff

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0041]The systems, devices, and methods of the present invention provide assisted takeoff for an aerial vehicle from a surface, which enables improved control for a user. The aerial vehicle may be an unmanned aerial vehicle (UAV), or any other type of movable object. Oftentimes, a feedback control is used during flight of an aerial vehicle. During normal flight operations, a proportional-integral-derivative (PID) flight control system is often used. However, during takeoff, memory effects of integration combined with ground forces may cause the meaning of the integration expression to go wrong. This can cause instability during takeoff and may require complex maneuvers that many novice users may not be familiar or comfortable with. This can lead to crashing of the UAV during takeoff.

[0042]An assisted takeoff system, method, and device may be provided which may reduce this instability during takeoff and permit novice users to easily control the aerial vehicle during takeoff. While th...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Systems, methods, and devices are provided for assisted takeoff of an aerial vehicle. The aerial vehicle may takeoff using a first control scheme and switch to a second control scheme for normal flight when a takeoff threshold is met. The first control scheme optionally does not use integral control while the second control scheme may use integral control. The aerial vehicle may determine that a takeoff threshold is met, based on an output to a motor of the aerial vehicle and / or an acceleration of the aerial vehicle.

Description

CROSS-REFERENCE[0001]This application is a continuation application of International Application No. PCT / CN2014 / 074232, filed on Mar. 27, 2014, the content of which is hereby incorporated by reference in its entirety.BACKGROUND OF THE INVENTION[0002]Aerial vehicles such as unmanned aerial vehicles can be used for performing surveillance, reconnaissance, and exploration tasks for military and civilian applications. Such vehicles may carry a payload configured to perform a specific function. These aerial vehicles may take off and land on a surface.[0003]However, when traditionally controlled aerial vehicles take off from a surface, the feedback control systems used combined with the force provided by the surface can cause initial instability. Particularly, when a surface is sloped, the takeoff may not be vertical, and there may be a greater probability of crashing or falling over. The takeoff often presents a challenge for users, particularly inexperienced users, and if the aircraft i...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): B64D31/06B64C27/00B64C39/02B64C29/00B64D27/00
CPCB64D31/06B64C29/00B64D27/00B64C2201/14B64C27/00B64C2201/088B64C39/024G05D1/101G05D1/0669B64U30/20B64U2201/00B64U10/10G05D1/042G05B11/42
Inventor SHI, JUNPAN, XU YANG
Owner SZ DJI TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products