Namely, in the above-described alignment device, in each piezoelectric actuator of each movable support means, the support block is brought into contact with or separated from the movable table by the expansion and contraction operation (hereinafter, merely referred to as expansion operation in this specification) of the third piezoelectric element, and the support block is moved in the two-dimensional direction, that is the horizontal direction, by the expansion operations of the first and second piezoelectric elements, and accompanying with the movement, the third piezoelectric element is swung. The third piezoelectric element is repeatedly brought into contact with and separated from the movable table via the support block, accompanying therewith the swing operation is repeated, and by the condition where this operation is performed for each piezoelectric actuator of the pair of piezoelectric actuators alternately, two third piezoelectric elements operate as if they were in a walking motion relative to the movable table, and this motion is exhibited as the walking operation. This walking operation is a relative operation to the movable table, and actually, the movable table side is moved by driving the plurality of movable support means. By controlling the drive of the plurality of movable support means, the movable table can be adjusted in position in a single plane simultaneously in X-axis and Y-axis directions (horizontal direction) and .theta. direction (rotational direction), and besides, the position of the rotational center can also be controlled arbitrarily, and therefore, the object can be moved to a target position with a high accuracy at a time by the specified movable support means using piezoelectric elements.
In this positioning, because basically it is not necessary to have a mechanical guide structure, the positioning accuracy is not limited originating from the mechanical guide structure. Further, because the movable table can be driven in a single plane simultaneously in X-axis, Y-axis and .theta. directions by the drive of the plurality of movable support means, the distance up to the positioning surface on the movable table or on the object held on the movable table may be small from the viewpoint of this drive system due to the plurality of movable support means, and therefore, there does not occur a problem of amplification of an control error in the drive of the positioning surface ascribed to this distance, which has occurred in a case where the distance from a drive surface to a positioning surface becomes relatively large such as a case of a conventional device. Therefore, a high accuracy for positioning can be ensured. Namely, since an efficient and high-accuracy positioning can be performed at a time by the plurality of movable support means without using a mechanical guide structure, an error ascribed to the drive for positioning hardly occurs, and a high-accuracy positioning becomes possible. Further, since the drive plane in X-axis, Y-axis and .theta. directions by the plurality of movable support means becomes substantially a single plane, the drive efficiency for positioning is good. Furthermore, because the plurality of movable support means form one set of positioning means disposed substantially on a single plane, the alignment device can be reduced in size particularly in the vertical direction, as compared with a case where position adjusting tables for the respective axes directions and the rotational direction are stacked such as a case of a conventional device.
Further, since piezoelectric elements capable of controlling the expansion amounts with a high accuracy are used for the control of the movement of the movable table by the plurality of movable support means, namely, since piezoelectric elements each having an extremely high resolution are used (at present, although the resolution of a piezoelectric element itself is less than an angstrom level, the resolution of a measurement / control system including a piezoelectric element and various equipment is about 12 nm, and it is possible to further improve the resolution to a level less than 5 nm by changing the control structure), a significantly high-accuracy positioning becomes possible. Further, even if the size of an object to be positioned becomes large, because the respective movable support means can be disposed at positions corresponding to the radially outer portions of the object, the resolution particularly in .theta. direction can be maintained to be high.
The above-described alignment device according to the present invention may be constructed so that the coarse positioning of the object is carried out by the walking operation, and the precise positioning of the object is carried out by the expansion operations of the respective piezoelectric elements at a condition where the walking operation is stopped. Since the amount of expansion of each piezoelectric element can be controlled at a significantly high accuracy although the amount itself cannot be increased so much, it is possible to perform the positioning at a submicron level, which has been impossible in the conventional technology, and further at a nanometer level, by such a high-accuracy adjustment after the coarse adjustment due to the walking operation.
It is preferred to perform the above-described precise positioning of the object within a range of one step of the walking operation. By this, the high-accuracy fine adjustment utilizing the expansion operations themselves of the piezoelectric elements after the above-described coarse adjustment can be carried out more surely. Further, it is preferred that the swing position of the third piezoelectric element due to the expansion operations of the first and second piezoelectric elements is reset to a center position in a range of one step of the walking operation before the precise positioning of the object. By this, the high-accuracy fine adjustment utilizing the expansion operations themselves of the piezoelectric elements after the above-described coarse adjustment can be carried out in an arbitrary direction.