Organic light-emitting device
a light-emitting device and organic technology, applied in the direction of semiconductor devices, basic electric elements, electrical appliances, etc., can solve the problems affecting the efficiency and lifetime characteristics of organic light-emitting devices, and achieve the effects of improving image quality, preventing image sticking and black non-uniformity, and improving emission efficiency and lifetime characteristics
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
[0102]A silver (Ag) layer and an ITO layer were sequentially formed on a glass substrate to a thickness of about 100 nm and about 7 nm, respectively. Next, the glass substrate was washed with distilled water, and then ultrasonically washed in isopropyl alcohol and then in pure water for 5 minutes each, followed by drying in a vacuum oven for 1 hour.
[0103]N,N′-diphenyl-N,N′-di(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) was deposited on the ITO layer to form a first hole transport layer (HTL) having a thickness of about 34 nm, and 1,4,5,8,9,12-hexaazatriphenylenehexanitrile (HAT-CN6) as an intermediate layer material was deposited thereon to form an intermediate layer having a thickness of about 5 nm.
[0104]NPB was deposited on the intermediate layer to form a second HTL having a thickness of about 68 nm, and HAT-CN6 was then deposited thereon to form another intermediate layer having a thickness of about 5 nm. NPB was then deposited on the intermediate layer to form a third HTL havi...
example 2
[0109]An organic light-emitting device was manufactured in the same manner as in Example 1, except that a green EML, instead of the red EML, was formed.
[0110]The green EML was formed using 88 parts by weight of 4,4′-bis(carbazol-9-yl) biphenyl (CBP) as a host, 10 parts by weight of tris(2-phenylpyridinato)iridium as an emitting dopant, and 1 part by weight of N,N′-diphenyl-N,N′-di(1-naphthyl)-1,1′-biphenyl-4,4′-diamine) (NPB) as an auxiliary dopant to achieve a thickness of about 20 nm.
example 3
[0111]An Ag layer and an ITO layer were sequentially formed on a glass substrate to a thickness of about 100 nm and about 7 nm, respectively. Next, the glass substrate was washed with distilled water, and then ultrasonically washed in isopropyl alcohol and then in pure water for 5 minutes each, followed by drying in a vacuum oven for 1 hour.
[0112]NPB was deposited on the ITO layer to form a first HTL having a thickness of about 34 nm, and 1,4,5,8,9,12-hexaazatriphenylenehexanitrile (HAT-CN6) as an intermediate layer material was deposited thereon to form an intermediate layer having a thickness of about 5 nm.
[0113]NPB was deposited on the intermediate layer to form a second HTL having a thickness of about 68 nm, and HAT-CN6 was then deposited thereon to form another intermediate layer having a thickness of about 5 nm. NPB was then deposited on the intermediate layer to form a third HTL having a thickness of about 34 nm.
[0114]Next, a blue EML was formed on the third HTL to have a thi...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com