Process for producing high-purity basic magnesium carbonate from dolomite
A process method and dolomite technology, applied in directions such as magnesium carbonate, can solve problems such as difficult separation of calcium and magnesium, and achieve the effects of abundant raw materials, high yield and low production cost
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0029] Example 1: The chemical composition of dolomite is MgO content 20.96%, CaO content 30.06%, broken to 2~5cm. Calcined at 900°C for 3 hours to obtain calcined white. The calcined white is mixed according to the mass ratio of water: calcined white is 50:1, the digestion temperature is controlled at 60°C, and the heat preservation is digested for 1 hour to obtain the emulsion. The emulsion is passed through a 60-mesh sieve to obtain refined magnesium emulsion. After cooling to room temperature, CO 2 , CO 2 The flow rate is 0.5L / min, and the pH value of the carbonization system is tracked and tested. When the carbonization system is at pH=8.5, add ammonium oxalate to make the concentration of oxalate in the system 0.002mol / L, continue carbonization to pH=6.5, and stop carbonization. The carbonized system is separated from solid to liquid, the solid phase is light calcium carbonate, and the liquid phase is heavy magnesium water. The obtained heavy magnesium water was pyr...
Embodiment 2
[0030] Example 2: The chemical composition of dolomite is MgO content 20.96%, CaO content 30.06%, broken to 2~5cm. Calcined at 950°C for 2.5h to obtain calcined white. Mix calcined white according to the mass ratio of water: calcined white is 40:1, stir and heat to 70°C, heat-preserve and digest for 1.5h to obtain emulsion. The emulsion is passed through a 60-mesh sieve to obtain refined magnesium emulsion. After cooling to room temperature, CO2 , CO 2 The flow rate is 0.8L / min, and the pH value of the carbonization system is tracked and tested. When the carbonization system is at pH=9.0, add oxalic acid to make the concentration of oxalate in the system 0.005mol / L, continue carbonization to pH=6.8, and stop carbonization. The carbonized system is separated from solid to liquid, the solid phase is light calcium carbonate, and the liquid phase is heavy magnesium water. The obtained heavy magnesium water was pyrolyzed at 100°C for 2 hours, solid-liquid separation after cooli...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com