Non-decoupling motion distribution method for continuous on-orbit linkage trajectory capture experiment
A trajectory capture and motion distribution technology, applied in aerodynamic tests, machine/structural component testing, instruments, etc.
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0090] Such as figure 1 As shown, the separation body mechanism and the main body mechanism of this embodiment are installed in the form of upper and lower structures, and the separation body model and the main body model are placed in the flow field of the hypersonic wind tunnel during the experiment.
[0091] The main body mechanism has six degrees of freedom, which are respectively controlled by six parts in series, including the main body X-direction linear movement mechanism, the main body Y-direction linear movement mechanism, the main body Z-direction linear movement mechanism, the main body α pitch rotation mechanism, the main body The β yaw rotation mechanism and the main body γ roll mechanism; the main body X-direction linear movement mechanism, the main body Z-direction linear movement mechanism, and the main body Y-direction linear movement mechanism are all driven by the motor and the lead screw. The main body α pitch rotation mechanism, the main body β yaw The ro...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com