Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Patient carestation

a technology for patients and caregivers, applied in the field of patient carestations, can solve the problems of difficult caregivers, difficult working conditions, and difficult environment surrounding, and achieve the effects of reducing the normal clutter of the nursery, ensuring the wellbeing of the infant, and facilitating observation

Inactive Publication Date: 2005-09-29
TEN EYCK LAWRENCE G +4
View PDF25 Cites 43 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0027] As a further feature, the integrated stream of information and data can be transmitted to a smart alarm that uses that information and data to provide a diagnosis as a tool to the caregiver to inform that caregiver of the likely cause for certain abnormal conditions. Basically the smart alarm is capable of carrying out (1) the integration of data and capability to prioritize multiple alarms to yield the critical ones, (2) the integration of data and capability to highlight the user to the alarms that need first response, (3) the integration of data and capability to prevent false alarms, (4) the integration of data and capability to more clearly define the alarm condition of the patient and (5) the integration of data and capability to prompt, or suggest, action to the caregiver depending upon alarms, data and history.
[0028] Thus with the present invention, as an additional benefit, the vast number of diverse monitors is eliminated and the caregiver does not have to look in multiple directions in order to obtain the information relating to the status of the infant and, to some extent, the functioning of the infant care apparatus as well as that of other peripheral apparatus being employed in maintaining the wellbeing of the infant. The normal clutter of the nursery is therefore greatly reduced by combining and providing the integrated diverse electrical signals relating to the physiological and environment conditions, as well as therapeutic and patient information, that are being monitored by the infant care center that can be readily seen at a single location and there is less stress on the caregiver who does not have to constantly scan in all directions to be assured that the infant is being properly monitored.

Problems solved by technology

There are other sensors, however, that also sense a particular physiological condition of the infant and those signals may or may not be integrated into some control or other circuitry within the infant care apparatus.
Each of those physiological sensors and monitors surround the infant care apparatus or are in close proximity thereto and which crowd the hospital nursery and make working conditions difficult with the myriad of wires, tubes and the like.
It is difficult for the caregiver to take note of the different monitors located in separate locations in the nursery and the vast array of monitors creates a working environment that is cluttered with the inevitable wires and tubes to attach the various sensors to the monitors.
There has been, in the past, an infant care apparatus that received, from separate transducers, signals representative of the patient's skin temperature and the concentration of oxyhemoglobin in the infant's blood via oximetry, and provided those signals in a stream of data at an outlet of the infant care apparatus, for instance at an RS232 plug, however, even with that infant care apparatus, the environment surrounding the infant was not taken into consideration and which can be affected by the performance and functioning of the infant care apparatus itself or by some peripheral equipment.
In addition, while the information and data may have been available, there was no attempt to make use of the combined information and data to enhance the quality of care being provided to the infant.
As such there are, therefore, a myriad of monitors and sensors that continuously ascertain the various types or classes of data and information relating to the patient, distributed in various locations about the nursery or other hospital location, however, there has been no attempt to combine the disparate signals into an integrated stream of data and to use the integrated stream of data in a form that is compatible in order to evaluate the infant or the apparatus, or both.
Without that central integration circuitry that can process the various signals that carry data and information from the differing sensors and inputs to a integrated signal processor, there is, obviously, no way that a user can gain the important insight that can be derived from utilizing all of the various types of data and information to evaluate the apparatus and / or the infant.
Individually, at the present, those different sensed values are located at separate, spaced apart monitors may not allow the clinician to respond as rapidly.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Patient carestation
  • Patient carestation
  • Patient carestation

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0034] Referring now to FIG. 1 there is shown a perspective view of a typical hospital nursery having an infant care apparatus 10 situated therein. As can be seen, the infant care apparatus 10 is normally surrounded by a number of individual monitors that sense various parameters relating to the environment surrounding or affecting the infant by the infant care apparatus 10 as well as other peripheral devices and apparatus that may also be carrying out certain functions on the infant, including an infant ventilator 12. In addition there are a number of sensors and monitors that are continually sensing the physiological conditions of the infant.

[0035] For example, as to physiological conditions of the infant, there may be an oximeter 14 that is sensing the oxygenated blood concentration of the infant. Also as can be seen, there can normally be one or more syringe pumps 16 that deliver a bolus of a medication to the infant and which can be mounted to an IV pole 18. Other equipment in...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A patient carestation for providing care to a patient including at least one environmental sensor sensing information concerning the environment surrounding the patient and providing electronic signals indicative of that environment. There are also physiological sensors sensing information relating to physiological conditions of the patient other than skin temperature and providing electronic signals indicative of physiological conditions of the patient. There may also be therapeutic sensors providing data based on therapy administered by peripheral apparatus and an input receiving patient information. A signal processor receives the signals from the physiological sensors, the environmental sensor, the therapeutic sensor and the patient information input and combines those signals into an integrated combination of signals for use by the caregiver. The integrated combination of signals can be used in a smart alarm or to generally appraise the caregiver at a central location as to the status of the patient.

Description

BACKGROUND [0001] The present invention relates to a patient carestation, such as an infant carestation and, more particularly, to an apparatus having an integrated signal processing unit that receives disparate signals representing physiological information of a patient, such as an infant, as well as environmental conditions surrounding the infant being attended to by that infant care apparatus and / or other information relevant to the care of the infant. [0002] Presently there are various differing types of patient care apparatus, particularly infant care apparatus, including incubators, warmers or combinations thereof. For example, an infant incubator is shown and described in U.S. Pat. No. 4,936,824 of Mackin et al; an infant warmer is shown and described in U.S. Pat. No. 5,474,517 of Falk et al and a combination apparatus combining the functions of an incubator and an infant warmer is shown and described in U.S. Pat. No. 6,224,532 of Jones et al and U.S. Pat. No. 6,231,499 of Jo...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61B5/00A61B5/0205A61G11/00A61G12/00
CPCA61B5/02055A61B2560/0242A61B5/411
Inventor TEN EYCK, LAWRENCE G.FALK, STEVEN M.LYNAM, LYNN E.SEVERNS, MATTHEW L.MACKIN, MICHAEL H.
Owner TEN EYCK LAWRENCE G
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products