Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Dialysis Catheter

a catheter and catheter technology, applied in the field of catheters, can solve the problems of complicated dissection, neck certainly is not the unobtrusive location, doctor's limitations on the distance between the distal tip of the catheter and the cuff, etc., and achieve the effect of preventing bleeding and facilitating catheter replacemen

Inactive Publication Date: 2008-05-08
KERR ANDREW
View PDF19 Cites 21 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patent describes two ways to use a catheter for medical purposes: one way involves inserting it directly into a vein (retrograde placement) while another method involves placing it first in a person's skin before connecting it to a larger vessel (antegrade placement). Both methods involve attaching a hub to the catheter and securing it in place. One advantage of this design is that if there is any problem with the catheter, such as becoming infected or getting blocked, it can easily be replaced without having to remove the entire device from the patient. Another benefit is that when replacing the catheter, its position remains stable which reduces the risk of complications during treatment. Overall, this technology provides better protection against infection and minimizes damage to blood vessels.

Problems solved by technology

The technical problem addressed in this patent text is how to improve the design of a long-term dialysis catheter that does not require a large inventory of differently sized catheters and allows for precise positioning of both the tip and the cuff without compromising effectiveness. Current options have limited availability due to their cost and complexity.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Dialysis Catheter
  • Dialysis Catheter
  • Dialysis Catheter

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0061] A dialysis catheter assembly in accordance with the invention is identified generally by the numeral 10 in FIG. 1A. The catheter assembly 10 includes a catheter 12 with a proximal end 14 and a distal end 16. The proximal end 14 will be disposed externally on the patient, while the distal end 16 will be positioned at a selected location in a blood vessel of the patient, and preferably in close proximity to the heart of the patient. A subcutaneous tube 20 is mounted over a portion of the catheter 12 near the proximal end 14. The subcutaneous tube 20 will be disposed in a subcutaneous tunnel extending from a location on the chest of the patient to a location near the neck of the patient. The tube 20 includes a proximal end 22 that will be disposed externally of the patient and a distal end 24 that will be in the subcutaneous tunnel. A polyester cuff 26 or other fibrosing agent is disposed near the distal end of the tube 24 and is configured to promote the growth of scar tissue t...

second embodiment

[0067] A catheter in accordance with the invention is identified by the numeral 62 in FIG. 7. The catheter 62 includes a proximal end 64 and a distal end 66. Portions of the catheter 62 adjacent the proximal end 64 are formed with non-cylindrical external surface configurations 68. In a preferred embodiment, as shown in FIG. 7, the exterior of the catheter 62 near the proximal end 64 includes an alternating arrangement of conical surfaces 68A intersecting radial surfaces 68B. Thus, a Christmas tree pattern is formed. The catheter 62 is used with a hub 70, as shown in FIG. 8. The hub 70 has a proximal end 72, a distal end 74 and a passage 76 extending therebetween. The passage 76 includes surface configurations that mate with the external surface configuration 68 near the proximal end 64 of the catheter 62. As a result, the proximal end 64 of the catheter 62 can be urged in a distal-to-proximal direction into the distal end 74 of the hub 70. This distal-to-proximal movement of the ca...

third embodiment

[0069] a hub in accordance with the subject invention is identified generally by the numeral 80 in FIG. 9. The hub 80 has a proximal end 82, a distal end 84 and a passage 86 extending therethrough. A notch 88 is formed on the outer surface of the hub 80 near the distal end 84. A cuff 90, as shown in FIG. 10, can be pressed over the distal end 84 of the hub 80 and forcibly retained in the notch 88 to compress the hub 80 into engagement with the catheter 12. This assembly can be used substantially as with the previous embodiments and ensures that the distal end 16 of the catheter 12 can be positioned precisely and that the cuff 90 can be disposed at the preferred position for anchoring in the tunnel.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A catheter assembly includes catheter having proximal and distal ends and at least one lumen extending between the ends. At least one end of the catheter is formed from a material that can be trimmed to achieve a selected length for the catheter. A tubular connector is telescoped over the catheter and a hub is joined to the tubular connector. Proximal portions of the hub are configured for connection to a medical apparatus. A cuff is mounted around the tubular connector or the catheter. The cuff is formed from a material that will permit or promote the growth of scar tissue for anchoring the catheter device at least on a semi-permanent basis in a patient.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Owner KERR ANDREW
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products