Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Fairing for a combustion chamber end wall

Active Publication Date: 2008-10-02
SN DETUDE & DE CONSTR DE MOTEURS DAVIATION S N E C M A
View PDF12 Cites 12 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012]The fairing of the invention is fastened sector by sector onto the upstream edges of the outer and inner walls of the combustion chamber, thus making it possible to avoid forming the above-mentioned deformation lobes and to guarantee good contact between the fastener edges of each sector and said walls. In addition, there is no need to provide slots in the fastener edges, thereby avoiding the drawbacks associated with the presence of such slots.
[0013]In addition, with known fairings (as explained above), part of the bolt clamping force is used for deforming the fairing which is rigid. Since the fairing sectors of the invention are more flexible, it is possible either to reduce the clamping force, or else to obtain better contact between the assembled-together parts for the same clamping force.
[0015]By means of such overlap, air leakage between two adjacent sectors is avoided.
[0018]Said N-1 oblong holes extend in the circumferential direction of the fairing, and the holes enable said fastener elements to move circumferentially during mounting, such movement being due to the radial approach of the fairing to the diameters of the outer, inner, and end walls of the combustion chamber. This enables better contact and thus more effective clamping in the assembly, and avoids generating stresses in the sectors.
[0020]Having a single fastening point per fastener edge avoids problems associated with expansion differences between the assembled-together parts, in the event of such expansion differences being large while the turbomachine is in operation. In addition, since said fastening points are generally provided by means of a fastener element, in particular a bolt, passing through a hole formed in the sector, reducing the number of fastening points as much as possible reduces the number of fastener elements (bolts) that are used, thereby achieving a saving in weight. There is also a reduction in the number of holes to be made and thus in the cost of fabricating each sector. In addition, since the side edges of two adjacent sectors overlap, a sector contributes to holding in place the adjacent sector that it overlaps. Finally, as described below, the operation of fastening the sectors on the outer, inner, and end walls of the chamber remains simple.

Problems solved by technology

During this step, the bolt needs to be tightened quite considerably in order to take up assembly clearances that are inherent to fabrication and mounting tolerances, and that has the drawback of causing the fairing to lose its annular shape, the inner and / or outer edges of the fairing forming deformation lobes between pairs of bolts, giving these edges a “daisy” shape.
These lobes cause gaps to appear between the assembled parts, giving rise to air leakage and head losses.
In addition, given said mounting clearances, the mechanical stiffness of the assembly leads either to tightening with torque that is greater than can be accommodated by the bolt and / or the fairing, or else to insufficient contact for friction to pass operating forces via the bolted connections.
Nevertheless, that solution presents other drawbacks: in operation the slots lead to leaks of air that are harmful from an aerodynamic point of view and they also run the risk of constituting crack initiation points.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Fairing for a combustion chamber end wall
  • Fairing for a combustion chamber end wall
  • Fairing for a combustion chamber end wall

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0028]FIG. 1 shows an example of a turbojet in half-section on a section plane containing the axis of rotation X of the turbojet rotor. The turbojet comprises a centrifugal high-pressure compressor (not shown), and downstream therefrom a diffuser 4 opening out into a space 5 defined between concentric outer and inner casings 6 and 7, and occupied by an annular combustion chamber 8 supported by the casings 6 and 7.

[0029]Although FIG. 1 relates to a turbojet with a centrifugal compressor, the invention is not limited to this type of turbomachine.

[0030]The combustion chamber 8 has an inner 2 wall, an outer wall 3, and, in the upstream region of said chamber, an annular end wall 11 disposed between said inner and outer walls. This end wall 11 presents inner and outer fastener rims 11a and 11b folded upstream relative to the main portion of the end wall 11.

[0031]The end wall 11 carries injector heads 12 forming part of a system 13 for feeding fuel via fuel injectors 14 passing through th...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An annular fairing for covering the annular chamber end wall of a turbomachine combustion chamber, and in particular of an airplane turbojet. The fairing presents openings for passing fuel injectors that are supported by the chamber end wall. The fairing is subdivided into a plurality of adjacent sectors, each sector presenting inner and outer fastener edges capable of being fastened on either side of said chamber end wall. Each sector includes a lip on one of its side edges, which lip is connected to the remainder of the sector by a step, said lip being designed to over the side edge of the adjacent sector.

Description

[0001]The present invention relates to an annular fairing for covering the annular end wall of a turbomachine combustion chamber. The invention is applicable to any type of terrestrial or aviation turbomachine, and more particularly to airplane turbojets.BACKGROUND OF THE INVENTION[0002]Conventional turbojet combustion chambers comprise an inner wall, an outer wall, and in the upstream region of the chamber, an annular end wall disposed between said inner and outer walls. The chamber end wall supports injector heads that spray fuel into the combustion chamber.[0003]Those conventional combustion chambers also have an annular fairing serving firstly to cover the upstream (i.e. front) end of said chamber end wall together with said injector heads so as to protect them from any impact (as can occur if a bird or a block of ice is ingested into the turbojet), and secondly to ensure that the chamber end wall is aerodynamically contoured allowing air to flow with little head loss.[0004]In t...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): F02C1/00
CPCF23R3/10F23R3/50F23R3/60
Inventor BUNEL, JACQUES MARCEL ARTHURDE SOUSA, MARIO CESARTOUCHAUD, STEPHANE HENRI GUY
Owner SN DETUDE & DE CONSTR DE MOTEURS DAVIATION S N E C M A
Features
  • Generate Ideas
  • Intellectual Property
  • Life Sciences
  • Materials
  • Tech Scout
Why Patsnap Eureka
  • Unparalleled Data Quality
  • Higher Quality Content
  • 60% Fewer Hallucinations
Social media
Patsnap Eureka Blog
Learn More