Signal processor, filter, control circuit for power converter circuit, interconnection inverter system and pwm converter system
a control circuit and power converter technology, applied in the direction of motor/generator/converter stopper, dynamo-electric converter control, instruments, etc., can solve the problems of inability to design the control system by using a linear control theory, inability to analyze the system, and inability to achieve linearity and time-invariance. , to achieve the effect of maintaining linearity and time-invarian
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
first embodiment
[0104]Hereinafter, description will be made for a case where a signal processor which performs the process given by the transfer function matrix GI expressed by Equation (12) above is used as an electric current controller in a control circuit of an interconnection inverter system, as the present invention.
[0105]FIG. 6 is a block diagram for describing an interconnection inverter system according to the first embodiment.
[0106]As shown in the figure, an interconnection inverter system A includes a DC power source 1, an inverter circuit 2, a filter circuit 3, a voltage transformer circuit 4, a current sensor 5, a voltage sensor 6, and a control circuit 7.
[0107]The DC power source 1 is connected to the inverter circuit 2. The inverter circuit 2, the filter circuit 3, and the voltage transformer circuit 4 are connected in series in this order, to respective output lines of the phase U, phase V and phase W outputs, and then to a three-phase AC electrical power system B. The current senso...
second embodiment
[0138]The process represented by the transfer function of the element (1, 1) and the element (2, 2) in the matrix GI allows the positive-phase and the negative-phase sequence components in the fundamental wave component to pass through without changing their phases (see FIG. 7(a)). Therefore, it is possible to perform control on both of the positive-phase and the negative-phase sequence components in the fundamental wave component if the element (1, 2) and the element (2, 1) are “0” in the matrix GI represented by the Equation (12). In this case, there is no component enhancement unlike in the case where only the positive phase sequence component is controlled (where the matrix GI represented by Equation (12) is utilized), so the integral gain KI must be given a larger value accordingly. Hereinafter, description will be made for a second embodiment, where both of positive-phase and negative phase sequence components in the fundamental wave component are controlled.
[0139]FIG. 9 is a ...
third embodiment
[0148]FIG. 11 is a block diagram for describing a control circuit according to the In this figure, elements which are identical with or similar to those in the control circuit 7 in FIG. 6 are indicated by the same reference codes.
[0149]FIG. 11 shows a control circuit 7″, which differs from the control circuit 7 (see FIG. 6) according to the first embodiment in that it does not have the three-phase to two-phase converter 73 and the two-phase to three-phase converter 76, and that the current controller 74″ provides direct control using the current signals Iu, Iv, Iw.
[0150]Since three-phase to two-phase conversion and two-phase to three-phase conversion are expressed by Equation (1) and Equation (4), a process in which the three-phase to two-phase conversion is followed by the process represented by the matrix G of the transfer function and then followed by two-phase to three-phase conversion is represented by a transfer function matrix G′ shown as Equation (14) below:
G′=23[10-1232-12...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com