Electrode material, paste for electrodes, and lithium ion battery

a lithium ion battery and electrode technology, applied in the field of electrode electrode paste, electrode electrode paste, and electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrode electrod

Active Publication Date: 2016-06-02
SUMITOMO METAL MINING CO LTD
View PDF0 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0019]The electrode material, the paste for electrodes, and the lithium ion battery of the present invention are capable of improving the electron conductivity without impairing the lithium ion conductivity regardless of the use of an electrode active material having a carbonaceous film formed on the surface. Therefore, the electrode material, the paste for electrodes, and the lithium ion battery of the present invention are capable of suppressing the internal resistance of the battery at a low level, consequently, there is no concern of significant voltage drop, and high-speed charge and discharge can be carried out.

Problems solved by technology

However, the lithium oxoacid salt-based compound has a problem with low electron conductivity due to its crystal structure (olivine-type crystal structure).

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Electrode material, paste for electrodes, and lithium ion battery

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0149]4 mol of lithium acetate (LiCH3COO), 2 mol of iron (II) sulfate (FeSO4), and 2 mol of phosphoric acid (H3PO4) were mixed with 2 L (liters) of water so that the total amount reached 4 L, thereby preparing a homogeneous slurry-form mixture. Next, the mixture was accommodated in a pressure-resistant airtight container having a capacity of 8 L, and was hydrothermally synthesized for 1 hour at 200° C. Next, the obtained sediment was washed using water, thereby obtaining a cake-form precursor of an electrode active material.

[0150]Next, an aqueous solution obtained by dissolving 1.5 g of polyvinyl pyrrolidone and 0.15 g of carboxymethyl cellulose in 100 g of water and 100 g of the precursor of the electrode active material (in terms of the solid content) were mixed so as to produce a slurry, and a dispersion treatment was carried out on the slurry using a binary fluid-type wet jet crusher so that the average particle diameter (D50) of the primary particles of precursor particles of t...

example 2

[0153]An electrode material was obtained in the same manner as in Example 1 except for the fact that the amount of carboxymethyl cellulose added to produce the slurry was changed to 0.375 g and the firing temperature of the granulated body in the non-oxidative atmosphere was set to 720° C. Regarding the content of the organic compound in the slurry of Example 2, the amount of carboxymethyl cellulose (organic compound ii) was 25 parts by mass with respect to 100 parts by mass of polyvinyl pyrrolidone (organic compound i).

example 3

[0154]An electrode material was obtained in the same manner as in Example 1 except for the fact that the amount of carboxymethyl cellulose added to produce the slurry was changed to 0.75 g and the firing temperature of the granulated body in the non-oxidative atmosphere was set to 740° C. Regarding the content of the organic compound in the slurry of Example 3, the amount of carboxymethyl cellulose (organic compound ii) was 50 parts by mass with respect to 100 parts by mass of polyvinyl pyrrolidone (organic compound i).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
densityaaaaaaaaaa
densityaaaaaaaaaa
particle diameteraaaaaaaaaa
Login to view more

Abstract

An electrode material in which an electrode active material having a carbonaceous film formed on the surface is used, a migration path through which lithium ions diffuse is maintained in the carbonaceous film, and the lithium ion conductivity is also improved while the electron conductivity is supported by the carbonaceous film is provided.A electrode material, wherein the electrode material have a particulate shape, the electrode material is formed a carbonaceous film on surfaces of electrode active material particles, a coating proportion of the surfaces of the electrode active material particles by the carbonaceous film is 80% or more, and an apparent density (ρV) of the carbonaceous film calculated from an amount of carbon in the electrode material, a specific surface area of the electrode material, and an average film thickness of the carbonaceous film is in a range of 0.10 g / cm3 to 1.08 g / cm3.

Description

TECHNICAL FIELD[0001]The present invention relates to an electrode material, paste for electrodes, and a lithium ion battery.BACKGROUND ART[0002]In recent years, as a battery anticipated to have a small size, a light weight, and high capacity, a non-aqueous electrolytic solution-based secondary battery such as a lithium ion battery has been proposed and put into practical use. The lithium ion battery is configured to have a positive electrode and a negative electrode which have properties capable of reversibly intercalating and deintercalating lithium ions, and a non-aqueous electrolyte.[0003]As a negative electrode active material for negative electrode materials of the lithium ion battery, a lithium-containing metal oxide such as lithium titanate (Li4Ti5O12) or a carbon-based material is used.[0004]On the other hand, as a positive electrode active material for positive electrode materials of the lithium ion battery, a lithium-containing metal oxide such as lithium cobaltate (LiCoO...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H01M4/36H01M4/525H01M4/587H01M10/0525H01M4/58H01M4/133H01M4/131H01M4/505H01M4/485
CPCH01M4/366H01M4/131H01M4/525H01M4/505H01M2004/028H01M4/5825H01M4/133H01M4/587H01M10/0525H01M4/485H01M4/625H01M2220/10H01M2220/30H01M2220/20H01M4/0419H01M4/0471H01M4/136H01M4/623H01M10/052H01M2004/021Y02E60/10
Inventor KITAGAWA, TAKAOOOISHI, KENTA
Owner SUMITOMO METAL MINING CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products