Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

502results about "Manufacture by spraying" patented technology

Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries

Batteries including a lithium electrode and a sulfur counter electrode that demonstrate improved cycling efficiencies are described. In one embodiment, an electrochemical cell having a lithium electrode and a sulfur electrode including at least one of elemental sulfur, lithium sulfide, and a lithium polysulfide is provided. The lithium electrode includes a surface coating that is effective to increase the cycling efficiency of said electrochemical cell. In a more particular embodiment, the lithium electrode is in an electrolyte solution, and, more particularly, an electrolyte solution including either elemental sulfur, a sulfide, or a polysulfide. In another embodiment, the coating is formed after the lithium electrode is contacted with the electrolyte. In a more particular embodiment, the coating is formed by a reaction between the lithium metal of the lithium electrode and a chemical species present in the electrolyte.
Owner:POLYPLUS BATTERY CO INC

Method for preparing electrode material for lithium battery

A method for preparing an electrode material for a lithium battery, characterized in that a noncrystalline silicon thin film that serves as an active material is deposited on a substrate.
Owner:SANYO ELECTRIC CO LTD

High discharge capacity lithium battery

A lithium / iron disulfide electrochemical battery cell with a high discharge capacity. The cell has a lithium negative electrode, an iron disulfide positive electrode and a nonaqueous electrolyte. The iron disulfide of the positive electrode has a controlled average particle size range which allows the electrochemical cells to exhibit desired properties in both low and high rate applications. In various embodiments, the iron disulfide particles are wet milled, preferably utilizing a media mill or milled utilizing a non-mechanical mill such as a jet mill, which reduces the iron disulfide particles to a desired average particle size range for incorporation into the positive electrode.
Owner:EVEREADY BATTERY CO INC

Lithium secondary battery and method for manufacturing thereof

A lithium secondary battery comprising an electrode in which an active material layer which includes an active material that electrochemically occludes and releases lithium is formed on a current collector, wherein cracks are formed in the active material layer by occlusion and release of lithium ions and thereafter a solid electrolyte is formed in the cracks in the active material layer.
Owner:SANYO ELECTRIC CO LTD

Electrode, electrochemical device, method for manufacturing electrode, and method for manufacturing electrochemical device

The electrode of the present invention is provided with an active material-containing layer comprising as the structural material composite particles composed of an electrode active material, a conductive additive and a binder, and a current collector in electrical contact with the layer. The composite particles are formed by integrating the conductive additive and binder with the electrode active material particles. The active material-containing layer is formed by subjecting powder comprising at least the composite particles to pressurization treatment to form a sheet, and placing the sheet at the location of the current collector at which the active material-containing layer is to be formed. The electrode active material and conductive additive in the active material-containing layer are non-isolated and electrically linked. This construction allows an electrode with excellent electrical characteristics to be realized, which exhibits adequately reduced internal resistance and easily permits increased energy density to be achieved for electrochemical devices.
Owner:TDK CORPARATION

Lithium secondary battery

A lithium secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the positive electrode or the negative electrode is an electrode obtained by depositing a thin film of active material capable of lithium storage and release on a current collector, the thin film is divided into columns by gaps formed therein in a manner to extend in its thickness direction and the columnar portions are adhered at their bottoms to the current collector, and the nonaqueous electrolyte contains at least one selected from phosphate ester, phosphite ester, borate ester and carboxylic ester having a fluoroalkyl group.
Owner:SANYO ELECTRIC CO LTD

Polymer supported electrodes

Methods and devices arising from the practice thereof for making and using battery electrodes formed onto ion permeable, electrically non-conductive substrates, preferably battery separators are disclosed herein. Electrodes are formed onto substrates using a variety of methods including, but not limited to, spray coating and electrophoretic deposition. Electrically conductive layers may be applied to the electrode coating layer side opposite or adjacent to the substrate to act as current collectors for the battery. Multilayer devices having alternating layers of conductive layers, electrode layers and substrates, wherein the conductive layers may be in electrical communication with other conductive layers to form a battery.
Owner:MOLECULAR NANOSYST

Composite particle for electrode and method of making the same, electrode and method of making the same, and electrochemical device and method of making the same

The composite particle for an electrode in accordance with the present invention contains an electrode active material, a conductive auxiliary agent having an electronic conductivity, and an oxidizing / reducing agent. Therefore, this composite particle can construct an effective conductive network, and effectively provide so-called oxidizing / reducing capacity due to the oxidizing / reducing agent. Hence, when the composite particle for an electrode in accordance with the present invention is used as a constituent material of an electrode in an electrochemical device, the electrochemical device can realize a higher capacity.
Owner:TDK CORPARATION

Nonaqueous electrolyte battery, electrode plate for nonaqueous electrolyte battery, and method for manufacturing electrode plate for nonaqueous electrolyte battery,

A method for manufacturing an electrode plate of a nonaqueous electrolyte battery comprises the steps of: running a sheet conductive base material in a first direction; and injecting an electrode material composition containing an electrolyte from a die nozzle onto a first surface of the running sheet conductive base material to form uncoated areas at predetermined intervals on the first surface along the first direction.
Owner:KK TOSHIBA

Method of synthesizing electrochemically active materials from a slurry of precursors

A method for making an active material comprises the steps of forming a slurry, spray drying the slurry to form a powdered precursor composition, and heating the powdered precursor composition at a temperature and for a time sufficient to form a reaction product. The slurry has a liquid phase and a solid phase, and contains at least an alkali metal compound and a transition metal compound. Preferably the liquid phase contains dissolved alkali metal compound, and the solid phase contains an insoluble transition metal compound, an insoluble carbonaceous material compound, or both. Electrodes and batteries are provided that contain the active materials.
Owner:RIL USA INC +1

Composites of self-assembled electrode active material-carbon nanotube, fabrication method thereof and secondary battery comprising the same

A composite of electrode active material including aggregates formed by self-assembly of electrode active material nanoparticles and carbon nanotubes, and a fabrication method thereof are disclosed. This composite is in the form of a network in which at least some of the carbon nanotubes connect two or more aggregates that are not directly contacting each other, creating an entangled structure in which a plurality of aggregates and a plurality of carbon nanotube strands are intertwined. Due to the highly conductive properties of the carbon nanotubes in this composite, charge carriers can be rapidly transferred between the self-assembled aggregates. This composite may be prepared by preparing a dispersion in which the nanoparticles and / or carbon nanotubes are dispersed without any organic binders, simultaneously spraying the nanoparticles and the carbon nanotubes on a current collector through electrospray, and then subjecting the composite material formed on the current collector to a heat treatment.
Owner:KOREA INST OF SCI & TECH

Graded electrode technologies for high energy lithium-ion batteries

Embodiments described herein provide methods and systems for manufacturing faster charging, higher capacity energy storage devices that are smaller, lighter, and can be more cost effectively manufactured at a higher production rate. In one embodiment, a graded cathode structure is provided. The graded cathode structure comprises a conductive substrate, a first porous layer comprising a first cathodically active material having a first porosity formed on the conductive substrate, and a second porous layer comprising a second cathodically active material having a second porosity formed on the first porous layer. In certain embodiments, the first porosity is greater than the second porosity. In certain embodiments, the first porosity is less than the second porosity.
Owner:APPLIED MATERIALS INC

Method for improving environmental stability of cathode materials for lithium batteries

A method for improving the environmental stability of cathode materials used in lithium-based batteries. Most currently used cathode active materials are acutely sensitive to environmental conditions, e.g. leading to moisture and CO2 pickup, that cause problems for material handling especially during electrode preparation and to gassing during charge and discharge cycles. Binder materials used for making cathodes, such as PVDF and PTFE, are mixed with and / or coated on the cathode materials to improve the environmental sensitivity of the cathode materials.
Owner:TIAX LLC

Electrochemical cell including functionally graded and architectured components and methods

Electrochemical cells or batteries featuring functional gradations, and having desirable, periodic configurations, and methods for making the same. One or more methods, in alone or in combination, are utilized to fabricate components of such electrochemical cells or batteries, which are designed to achieve certain thermal, mechanical, kinetic and spatial characteristics, and their effects, singly and in all possible combinations, on battery performance. The thermal characteristics relate to temperature distribution during charge and discharge processes. The kinetic characteristics relate to rate performance of the cells or batteries such as the ionic diffusion process and electron conduction. The mechanical characteristics relate to lifetime and efficiency of the cells or batteries such as the strength and moduli of the component materials. Finally, the spatial characteristics relate to the energy and power densities, stress and temperature mitigation mechanisms, and diffusion and conduction enhancements. The electrochemical cells or batteries constructed according to the methods presented in this invention are useful for all applications that require high rate performance, high energy / power density, good durability, high safety and long lifetime.
Owner:SAKTI3

Lithium secondary battery

A rechargeable lithium battery including a positive electrode, a negative electrode and a nonaqueous electrolyte, said positive or negative electrode being an electrode which has, on a current collector, a thin film of active material that stores and releases lithium, the thin film of active material being divided into columns by gaps formed therein in a manner to extend in its thickness direction, and the columnar portions being at their bottoms adhered to the current collector, the rechargeable lithium battery being characterized in that the nonaqueous electrolyte includes a mixed solvent consisting of two or more different solvents and containing at least ethylene carbonate and / or vinylene carbonate as its constituent.
Owner:SANYO ELECTRIC CO LTD

Protective coatings for conversion material cathodes

Battery systems using coated conversion materials as the active material in battery cathodes are provided herein. Protective coatings may be an oxide, phosphate, or fluoride, and may be lithiated. The coating may selectively isolate the conversion material from the electrolyte. Methods for fabricating batteries and battery systems with coated conversion material are also provided herein.
Owner:QUANTUMSCAPE BATTERY INC

Separation membrane for lithium sulfur batteries

Disclosed is a material which enhances stability for lithium in all the batteries, which use the lithium metal as an electrode material, by using and applying a lithium-substituted perfluoro sulfonic acid (PFSA) material in the form of a membrane or a powder to a lithium anode. Methods of manufacturing the material are also enclosed.
Owner:HYUNDAI MOTOR CO LTD

Layered lithium-nickel-based compound oxide powder and its production process

A layered lithium-nickel-based compound oxide powder for a positive electrode material for a high density lithium secondary cell, capable of providing a lithium secondary cell having a high capacity and excellent in the rate characteristics also, is provided. A layered lithium-nickel-based compound oxide powder for a positive electrode material for a lithium secondary cell, characterized in that the bulk density is at least 2.0 g / cc, the average primary particle size B is from 0.1 to 1 μm, the median diameter A of the secondary particles is from 9 to 20 μm, and the ratio A / B of the median diameter A of the secondary particles to the average primary particle size B, is within a range of from 10 to 200. In production of a layered lithium-nickel-based compound oxide powder, which comprises spray drying a slurry having a nickel compound and a transition metal element compound capable of substituting lithium other than nickel, dispersed in a liquid medium, followed by mixing with a lithium compound, and firing the mixture, the spray drying is carried out under conditions of 0.4≦G / S≦4 and G / S≦0.0012 V, when the slurry viscosity at the time of the spray drying is represented by V (cp), the slurry supply amount is represented by S (g / min) and the gas supply amount is represented by G (L / min).
Owner:MITSUBISHI CHEM CORP

Stabilized lithium composite particles

Stabilized lithium particles include a lithium-containing core and a coating of a complex lithium salt that surrounds and encapsulates the core. The coating, which is a barrier to oxygen and water, enables the particles to be handled in the open air and incorporated directly into electrochemical devices. The coating material is compatible, for example, with electrolytic materials that are used in electrochemical cells. The average coated particle size is less than 500 microns.
Owner:CORNING INC

Electrode impregnation and bonding

ActiveUS20050057888A1Long-lasting and durable and inexpensive to produceLower internal resistanceElectrolytic capacitorsHybrid capacitor electrodesEngineeringConductive materials
A method for making an electrode including a particle based film is disclosed in which the film is coated and / or impregnated with veins of conductive material. A support backing is placed adjacent to one side of the film to provide support and prevent damaging the film while the conductive material is applied onto the opposite side of the film. The film is bonded directly to a current collector of an energy storage device.
Owner:TESLA INC

Electrode for lithium ion secondary batteries, lithium ion secondary battery using the same, and method for manufacturing the battery

Disclosed is an electrode for lithium ion secondary batteries which includes an active material layer containing active material particles and a porous insulating layer formed on the surface of the active material layer. The porous insulating layer includes an inorganic filler and a resin binder, and the surface of the active material layer has a first region on which the porous insulating layer is formed, and a second region on which the porous insulating layer is not formed. By using such an electrode, a lithium ion secondary battery can have a high capacity, excellent characteristics and improved safety.
Owner:PANASONIC CORP

Protective coatings for conversion material cathodes

Battery systems using coated conversion materials as the active material in battery cathodes are provided herein. Protective coatings may be an oxide, phosphate, or fluoride, and may be lithiated. The coating may selectively isolate the conversion material from the electrolyte. Methods for fabricating batteries and battery systems with coated conversion material are also provided herein.
Owner:QUANTUMSCAPE CORP

Composite-coated lithium iron phosphate and preparation method therefor, and lithium ion battery

A composite-coated lithium iron phosphate in a three-dimensional nanonetwork layered structure and a preparation method therefor, and a lithium ion battery, wherein a composite is prepared by compounding a conducting polymer, graphene and a carbon nano tube. The preparation method for the coated lithium iron phosphate comprises the following steps: doping the composite and anhydrous ferric phosphate in situ in the process of preparing the anhydrous ferric phosphate, serving as a lithium iron phosphate precursor, then mixing the composite in-situ doped anhydrous ferric phosphate, a lithium source, a traditional carbon material and a solvent to obtain slurry, spray drying the slurry, and calcining to obtain the composite-coated lithium iron phosphate in a three-dimensional nanonetwork layered structure. The preparation method is simple and has a wide raw material source, low cost and very broad practical application prospect. Serving as an anode material of the lithium ion battery, the coated lithium iron phosphate has higher electrical conductivity and cycling stability, and more excellent comprehensive electrochemical performance.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Method of preparing battery electrodes

Provided herein is a method for preparing a battery electrode based on an aqueous slurry. The method disclosed herein has the advantage that an aqueous solvent can be used in the manufacturing process, which can save process time and facilities by avoiding the need to handle or recycle hazardous organic solvents. Therefore, costs are reduced by simplifying the total process. In addition, the batteries having the electrodes prepared by the method disclosed herein show impressive energy retention.
Owner:GRST INTERNATIONAL LTD

Electrode, lithium battery, method of manufacturing electrode, and composition for coating electrode

An electrode including a current collector, and an active material layer disposed on the current collector. The active material layer includes a structural network and an active material composition. The structural network includes a network of carbon nanotubes and a binder. The active material composition includes an active material and a polar medium.
Owner:SAMSUNG ELECTRONICS CO LTD

Apparatus for forming structured material for energy storage device and method

A method and an apparatus of the present invention is used for the high-rate deposition of materials, such as carbon, silicon, metals, metal oxides, and the like, onto a metal substrate defined by a metal tape. The particles of the material are mixed with fluid and are injected against the metal tape at a high pressure and high velocity. The particles of the material form a current collection surface of the metal tape. The metal tape is used as cathode or anode combined with a separator to form a fuel cell of a secondary battery, metal-ceramic membranes, film composite metal-ceramic materials for electronic devices.
Owner:NANOENER TECH INC +2

Nonaqueous secondary battery and method for producing the same

InactiveUS20090191460A1Density of active material is increasedEvenly distributedFinal product manufactureActive material electrodesParticulatesEngineering
An object of the present invention is to provide a nonaqueous secondary battery with high capacity and less cycle degradation and a method for producing thereof. The nonaqueous secondary battery of the present invention comprises a positive electrode having a positive electrode current collector and a positive electrode mixture layer disposed on the positive electrode current collector, a negative electrode having a negative electrode current collector and a negative electrode mixture layer disposed on the negative electrode current collector and a separator disposed between the positive electrode and the negative electrode, wherein the positive electrode mixture layer or the negative electrode mixture layer contains active material particles and a particulate binder adhered to the surface of the active material particles.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products