Anti-trem2 antibodies and methods of use thereof

a technology of anti-trem2 and antibodies, which is applied in the field of anti-trem2 and anti-dap12 antibodies, can solve the problems of a 3 fold increase in the risk of developing alzheimer's disease, the loss of function of trem2, and the effect of carrying these mutations is just as serious, so as to induce antigen-specific t-cell proliferation, reduce the expression of tnf-, and increase the expression of c-

Inactive Publication Date: 2017-08-24
ALECTOR LLC
View PDF2 Cites 20 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0038]In certain embodiments that may be combined with any of the preceding embodiments, the antibody is an agonist antibody, and wherein the antibody induces one or more TREM2 activities, DAP12 activities, or both. In certain embodiments that may be combined with any of the preceding embodiments, the isolated antibody induces or retains TREM2 clustering, DAP12 clustering, or both on a cell surface. In certain embodiments that may be combined with any of the preceding embodiments, the one or more TREM2 activities, DAP12 activities, or both are selected from the group consisting of TREM2 binding to DAP12; DAP12 binding to TREM2; TREM2 phosphorylation, DAP12 phosphorylation; PI3K activation; increased expression of one or more anti-inflammatory mediators (e.g., cytokines) selected from the group consisting of IL-12p70, IL-6, and IL-10; reduced expression of one or more pro-inflammatory mediators selected from the group consisting of IFN-a4, IFN-b, IL-6, IL-12 p70, IL-1β, TNF, TNF-α, IL-10, IL-8, CRP, TGF-beta members of the chemokine protein families, IL-20 family members, IL-33, LIF, IFN-gamma, OSM, CNTF, TGF-beta, GM-CSF, IL-11, IL-12, IL-17, IL-18, and CRP; reduced expression of TNF-α, IL-6, or both; extracellular signal-regulated kinase (ERK) phosphorylation; increased expression of C-C chemokine receptor 7 (CCR7); induction of microglial cell chemotaxis toward CCL19 and CCL21 expressing cells; an increase, normalization, or both of the ability of bone marrow-derived dendritic cells to induce antigen-specific T-cell proliferation; induction of osteoclast production, increased rate of osteoclastogenesis, or both; increasing the survival and / or function of one or more of dendritic cells, macrophages, microglial cells, M1 macrophages and / or microglial cells, activated M1 macrophages and / or microglial cells, M2 macrophages and / or microglial cells, monocytes, osteoclasts, Langerhans cells of skin, and Kupffer cells; induction of one or more types of clearance selected from the group consisting of apoptotic neuron clearance, nerve tissue debris clearance, non-nerve tissue debris clearance, bacteria or other foreign body clearance, disease-causing protein clearance, disease-causing peptide clearance, and disease-causing nucleic acid clearance; induction of phagocytosis of one or more of apoptotic neurons, nerve tissue debris, non-nerve tissue debris, bacteria, other foreign bodies, disease-causing proteins, disease-causing peptides, or disease-causing nucleic acids; normalization of disrupted TREM2 / DAP12-dependent gene expression; recruitment of Syk, ZAP70, or both to the TREM2 / DAP12 complex; Syk phosphorylation; increased expression of CD83 and / or CD86 on dendritic cells, macrophages, monocytes, and / or microglia; reduced secretion of one or more inflammatory cytokines selected from the group consisting of TNF-α, IL-10, IL-6, MCP-1, IFN-a4, IFN-b, IL-1β, IL-8, CRP, TGF-beta members of the chemokine protein families, IL-20 family members, IL-33, LIF, IFN-gamma, OSM, CNTF, TGF-beta, GM-CSF, IL-11, IL-12, IL-17, IL-18, and CRP; reduced expression of one or more inflammatory receptors; increasing phagocytosis by macrophages, dendritic cells, monocytes, and / or microglia under conditions of reduced levels of MCSF; decreasing phagocytosis by macrophages, dendritic cells, monocytes, and / or microglia in the presence of normal levels of MCSF; increasing activity of one or more TREM2-dependent genes; and any combination thereof. In certain embodiments that may be combined with any of the preceding embodiments, the antibody is of the IgG class the IgM class, or the IgA class. In certain embodiments that may be combined with any of the preceding embodiments, the antibody is of the IgG class and has an IgG1, IgG2, IgG3, or IgG4 isotype. In certain embodiments that may be combined with any of the preceding embodiments, the antibody has an IgG2 isotype. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a human IgG2 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the human IgG2 constant region comprises an Fc region. In certain embodiments that may be combined with any of the preceding embodiments, the antibody induces the one or more TREM2 activities, DAP12 activities, or both independently of binding to an Fc receptor. In certain embodiments that may be combined with any of the preceding embodiments, the antibody binds an inhibitory Fc receptor. In certain embodiments that may be combined with any of the preceding embodiments, the inhibitory Fc receptor is inhibitory Fc-gamma receptor IIB (FcγIIB). In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more modifications. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more amino acid substitutions. In certain embodiments that may be combined with any of the preceding embodiments, the one or more amino acid substitutions in the Fc region are at a residue position selected from the group consisting of V234A, G237A, H268Q, V309L, A330S, P331S, C232S, C233S, S267E, L328F, M252Y, S254T, T256E, and any combination thereof, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the human IgG2 constant region comprises a light chain constant region comprising a C214S amino acid substitution, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the antibody has an IgG1 isotype. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a human IgG1 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the human IgG1 constant region comprises an Fc region. In certain embodiments that may be combined with any of the preceding embodiments, the antibody binds an inhibitory Fc receptor. In certain embodiments that may be combined with any of the preceding embodiments, the inhibitory Fc receptor is inhibitory Fc-gamma receptor IIB (FcγRIIB). In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more modifications. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more amino acid substitutions. In certain embodiments that may be combined with any of the preceding embodiments, the one or more amino acid substitutions in the Fc region are at a residue position selected from the group consisting of N297A, D265A, L234A, L235A, G237A, C226S, C229S, E233P, L234V, L234F, L235E, P331S, S267E, L328F, A330L, M252Y, S254T, T256E, and any combination thereof, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises an IgG2 isotype heavy chain constant domain 1(CH1) and hinge region. In certain embodiments that may be combined with any of the preceding embodiments, the IgG2 isotype CH1 and hinge region comprise the amino acid sequence of ASTKGPSVFP LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGVHTFPAVLQSS GLYSLSSVVT VPSSNFGTQT YTCNVDHKPS NTKVDKTVERKCCVECPPCP (SEQ ID NO: 397). In certain embodiments that may be combined with any of the preceding embodiments, the antibody Fc region comprises a S267E amino acid substitution, a L328F amino acid substitution, or both, and / or a N297A or N297Q amino acid substitution, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a mouse IgG1 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the antibody has an IgG4 isotype. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a human IgG4 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the human IgG4 constant region comprises an Fc region. In certain embodiments that may be combined with any of the preceding embodiments, the antibody binds an inhibitory Fc receptor. In certain embodiments that may be combined with any of the preceding embodiments, the inhibitory Fc receptor is inhibitory Fc-gamma receptor IIB (FcγIIB). In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more modifications. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more amino acid substitutions. In certain embodiments that may be combined with any of the preceding embodiments, the one or more amino acid substitutions in the Fc region are at a residue position selected from the group consisting of L235A, G237A, S228P, L236E, S267E, E318A, L328F, M252Y, S254T, T256E, and any combination thereof, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the antibody has a hybrid IgG2 / 4 isotype. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises an amino acid sequence comprising amino acids 118 to 260 of human IgG2 and amino acids 261 to 447 of human IgG4, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a mouse IgG4 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the isolated antibody is an antibody fragment that binds to one or more human proteins selected from the group consisting of human TREM2, a naturally occurring variant of human TREM2, human DAP12, and naturally occurring variant of human DAP12, and wherein the antibody fragment is cross-linked to a second antibody fragment that binds to one or more human proteins selected from the group consisting of human TREM2, a naturally occurring variant of human TREM2, human DAP12, and naturally occurring variant of human DAP12. In certain embodiments that may be combined with any of the preceding embodiments, the fragment is an Fab, Fab′, Fab′-SH, F(ab′)2, Fv or scFv fragment. In certain embodiments that may be combined with any of the preceding embodiments, the isolated antibody is an inert antibody. In certain embodiments that may be combined with any of the preceding embodiments, the isolated antibody is an antagonist antibody. In certain embodiments that may be combined with any of the preceding embodiments, the isolated antibody inhibits one or more TREM2 activities. In certain embodiments that may be combined with any of the preceding embodiments, the one or more TREM2 activities are selected from the group consisting of decreasing activity of one or more TREM2-dependent genes; decreasing activity of one or more nuclear factor of activated T-cells (NFAT) transcription factors; decreasing the survival of macrophages, microglial cells, monocytes, osteoclasts, Langerhans cells of skin, Kupffer cells, and / or dendritic cells; and any combination thereof. In certain embodiments that may be combined with any of the preceding embodiments, the isolated antibody inhibits interaction between TREM2 and one or more TREM2 ligands, inhibits TREM2 signal transduction, or both. In certain embodiments that may be combined with any of the preceding embodiments, the antibody is incapable of binding an Fc-gamma receptor (FcγR). In certain embodiments that may be combined with any of the preceding embodiments, the antibody has an IgG1 isotype. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a human IgG1 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the human IgG1 constant region comprises an Fc region. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more modifications. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more amino acid substitutions. In certain embodiments that may be combined with any of the preceding embodiments, the one or more amino acid substitutions in the Fc region are at a residue position selected from the group consisting of N297A, N297Q, D265A, L234A, L235A, C226S, C229S, P238S, E233P, L234V, P238A, A327Q, A327G, P329A, K322A, L234F, L235E, P331S, T394D, A330L, M252Y, S254T, T256E, and any combination thereof, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region further comprises an amino acid deletion at a position corresponding to glycine 236 according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a mouse IgG1 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the antibody has an IgG2 isotype. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a human IgG2 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the human IgG2 constant region comprises an Fc region. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more modifications. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more amino acid substitutions. In certain embodiments that may be combined with any of the preceding embodiments, the one or more amino acid substitutions in the Fc region are at a residue position selected from the group consisting of V234A, G237A, H268E, V309L, N297A, N297Q, A330S, P331S, C232S, C233S, M252Y, S254T, T256E, and any combination thereof, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the antibody has an IgG4 isotype. In certain embodiments that may be combined with any of the preceding embodiments, the antibody comprises a human IgG4 constant region. In certain embodiments that may be combined with any of the preceding embodiments, the human IgG4 constant region comprises an Fc region. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more modifications. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region comprises one or more amino acid substitutions. In certain embodiments that may be combined with any of the preceding embodiments, the one or more amino acid substitutions in the Fc region are at a residue position selected from the group consisting of E233P, F234V, L235A, G237A, E318A, S228P, L236E, S241P, L248E, T394D, M252Y, S254T, T256E, N297A, N297Q, and any combination thereof, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the isolated antibody is an antibody fragment that binds to one or more human proteins selected from the group consisting of human TREM2, a naturally occurring variant of human TREM2, human DAP12, and naturally occurring variant of human DAP12. In certain embodiments that may be combined with any of the preceding embodiments, the fragment is an Fab, Fab′, Fab′-SH, F(ab′)2, Fv or scFv fragment. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region further comprises one or more additional amino acid substitutions at a position selected from the group consisting of A330L, L234F; L235E, P331S, and any combination thereof, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region further comprises one or more additional amino acid substitutions at a position selected from the group consisting of M252Y, S254T, T256E, and any combination thereof, wherein the numbering of the residues is according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the Fc region further comprises a S228P amino acid substitution according to EU or Kabat numbering. In certain embodiments that may be combined with any of the preceding embodiments, the antibody is a human antibody, a humanized antibody, a bispecific antibody, a multivalent antibody, or a chimeric antibody. In certain embodiments that may be combined with any of the preceding embodiments, the antibody is a bispecific antibody recognizing a first antigen and a second antigen. In certain embodiments that may be combined with any of the preceding embodiments, the antibody is a monoclonal antibody.
[0039]Other aspects of the present disclosure relate to an isolated antibody that binds to a TREM2 protein, wherein the isolated antibody promotes survival of one or more innate immune cells. Other aspects of the present disclosure relate to an isolated antibody that binds to a TREM2 protein, wherein the isolated antibody increases expression of IL-6. Other aspects of the present disclosure relate to an isolated antibody that binds to a TREM2 protein, wherein the isolated antibody promotes survival of one or more innate immune cells or increases expression of IL-6. Other aspects of the present disclosure relate to an isolated antibody that binds to a TREM2 protein, wherein the isolated antibody promotes survival of one or more innate immune cells and increases expression of IL-6. In certain embodiments, the one or more innate immune cells are selected from the group consisting of macrophages, microglial cells, M1 microglial cells, activated M1 microglial cells, M2 microglial cells, dendritic cells, M1 macrophages, activated M1 macrophages, M2 macrophages, monocytes, osteoclasts, Langerhans cells of skin, Kupffer cells, and any combination thereof. In certain embodiments, the one or more innate immune cells are macrophages. In certain embodiments, the one or more innate immune cells are microglial cells. In certain embodiments, the one or more innate immune cells are M1 microglial cells. In certain embodiments, the one or more innate immune cells are activated M1 microglial cells. In certain embodiments, the one or more innate immune cells are M2 microglial cells. In certain embodiments, the one or more innate immune cells are dendritic cells (DCs). In certain embodiments, the one or more innate immune cells are M1 macrophages. In certain embodiments, the one or more innate immune cells are activated M1 macrophages. In certain embodiments, the one or more innate immune cells are M2 macrophages. In certain embodiments, the one or more innate immune cells are monocytes. In certain embodiments, the one or more innate immune cells are osteoclasts. In certain embodiments, the one or more innate immune cells are Langerhans cells of skin. In certain embodiments, the one or more innate immune cells are Kupffer cells.
[0040]Other aspects of the present disclosure relate to an isolated antibody that binds to a TREM2 protein, wherein the isolated antibody binds to one or more amino acids within amino acid residues selected from the group consisting of: i. amino acid residues 29-112 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 29-112 of SEQ ID NO: 1; ii. amino acid residues 29-41 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 29-41 of SEQ ID NO: 1; iii. amino acid residues 40-44 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 40-44 of SEQ ID NO: 1; iv amino acid residues 43-50 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 43-50 of SEQ ID NO: 1; v. amino acid residues 49-57 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 49-57 of SEQ ID NO: 1; vi amino acid residues 47-69 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 47-69 of SEQ ID NO: 1; vii amino acid residues 67-76 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 67-76 of SEQ ID NO: 1; viii. amino acid residues 76-86 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 76-86 of SEQ ID NO: 1; ix. amino acid residues 91-100 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 91-100 of SEQ ID NO: 1; x. amino acid residues 99-115 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 99-115 of SEQ ID NO: 1; xi. amino acid residues 104-112 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 104-112 of SEQ ID NO: 1; xii. amino acid residues 114-118 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 114-118 of SEQ ID NO: 1; xiii. amino acid residues 130-171 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 130-171 of SEQ ID NO: 1; xiv. amino acid residues 139-146 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 139-146 of SEQ ID NO: 1; xv. amino acid residues 140-153 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 140-153 of SEQ ID NO: 1; xvi. amino acid residues 130-144 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 130-144 of SEQ ID NO: 1; and xvii. amino acid residues 158-171 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 158-171 of SEQ ID NO: 1. In certain embodiments, the isolated antibody binds to one or more amino acids within amino acid residues 43-50 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 43-50 of SEQ ID NO: 1. In certain embodiments, the isolated antibody binds to one or more amino acids within amino acid residues 49-57 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 49-57 of SEQ ID NO: 1. In certain embodiments, the isolated antibody binds to one or more amino acids within amino acid residues 139-146 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 49-57 of SEQ ID NO: 1. In certain embodiments, the isolated antibody binds to one or more amino acids within amino acid residues 140-153 of SEQ ID NO: 1, or amino acid residues on a TREM2 protein corresponding to amino acid residues 140-153 of SEQ ID NO: 1. In certain embodiments, the isolated antibody binds to an epitope comprising one or more amino acids within amino acid residues 43-50 of SEQ ID NO: 1. In certain embodiments, the isolated antibody binds to an epitope comprising one or more amino acids within amino acid residues 49-57 of SEQ ID NO: 1. In certain embodiments, the isolated antibody binds to an epitope comprising one or more amino acids within amino acid residues 139-146 of SEQ ID NO: 1. In certain embodiments, the isolated antibody binds to an epitope comprising one or more amino acids within amino acid residues 140-153 of SEQ ID NO: 1.

Problems solved by technology

Some of these mutations lead to truncation and likely loss-of-function of TREM2.
Although these TREM2 mutations are rarer than the known risk variants of Alzheimer's disease (e.g., APOE4), the effect of carrying these mutations is just as serious; around a 3 fold increase in the risk of developing Alzheimer's disease.
Moreover, even individuals without Alzheimer's disease who carry a heterozygous TREM2 mutation show worse cognition as compared to individuals with two normal TREM2 alleles.
The presence of M2-macrophages in tumors is associated with poor prognosis.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Anti-trem2 antibodies and methods of use thereof
  • Anti-trem2 antibodies and methods of use thereof
  • Anti-trem2 antibodies and methods of use thereof

Examples

Experimental program
Comparison scheme
Effect test

embodiment 1

2. The isolated antibody of embodiment 1, wherein the TREM2 protein, the DAP12 protein, or both is a mammalian protein or a human protein.

embodiment 2

3. The isolated antibody of embodiment 2, wherein the TREM2 protein, the DAP12 protein, or both is a wild-type protein.

4. The isolated antibody of embodiment 2, wherein the TREM2 protein, the DAP12 protein, or both is a naturally occurring variant.

5. The isolated antibody of any one of embodiments 1-4, wherein the one or more TREM2 activities comprise TREM2 binding to DAP12.

6. The isolated antibody of any one of embodiments 1-4, wherein the one or more DAP12 activities comprise DAP12 binding to TREM2.

7. The isolated antibody of any one of embodiments 1-6, wherein the one or more TREM2 activities, DAP12 activities, or both comprise DAP12 phosphorylation.

embodiment 7

8. The isolated antibody of embodiment 7, wherein DAP12 phosphorylation is induced by one or more SRC family tyrosine kinases.

9. The isolated antibody of any one of embodiments 1-8, wherein the one or more TREM2 activities, DAP12 activities, or both comprise PI3K activation.

10. The isolated antibody of any one of embodiments 1-9, wherein the one or more TREM2 activities, DAP12 activities, or both comprise increased expression of one or more anti-inflammatory mediators selected from the group consisting of IL-12p70, IL-6, and IL-10.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
dissociation constantaaaaaaaaaa
dissociation constantaaaaaaaaaa
dissociation constantaaaaaaaaaa
Login to view more

Abstract

The invention is generally directed to methods and compositions that include antibodies, e.g., monoclonal, chimeric, humanized antibodies, antibody fragments, etc., that specifically bind a TREM2 protein, e.g., a mammalian TREM2 and/or human TREM2. The methods provided herein find use in preventing, reducing risk, or treating an individual having dementia, frontotemporal dementia, Alzheimer's disease, Nasu-Hakola disease, or multiple sclerosis.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application claims the benefit of U.S. Provisional Application No. 62 / 035,336, filed Aug. 8, 2014, U.S. Provisional Application No. 62 / 135,110, filed Mar. 18, 2015, and U.S. Provisional Application No. 62 / 135,122, filed Mar. 18, 2015, each of which is hereby incorporated by reference in its entirety.SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE[0002]The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 735022000440SEQLISTING.TXT, date recorded: Aug. 7, 2015, size: 240 KB).FIELD OF THE INVENTION[0003]This invention relates to anti-TREM2 and anti-DAP12 antibodies and therapeutic uses of such antibodies.BACKGROUND OF THE INVENTION[0004]Triggering receptor expressed on myeloid cells-2 (TREM2) is an immunoglobulin-like receptor that is expressed primarily on myeloid lineage cells, such as macrophages, dendritic ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C07K16/28
CPCC07K16/2803C07K16/283C07K16/28C07K2317/34C07K2317/76A61K2039/505C07K2317/21C07K2317/31C07K2317/56C07K2317/33C07K2317/92C07K2317/52C07K2317/55C07K2317/75A61P25/00A61P25/28
Inventor MONROE, KATESCHWABE, TINAAVOGADRI-CONNORS, FRANCESCATASSI, IIARIALAM, HELENROSENTHAL, ARNON
Owner ALECTOR LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products