Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

43 results about "Src family" patented technology

Identification of polynucleotides for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in lung cancer cells

The present invention describes polynucleotides that have been discovered to correlate to the relative intrinsic sensitivity or resistance of cells, e.g., lung cell lines, to treatment with compounds that interact with and modulate, e.g., inhibit, protein tyrosine kinases, such as, for example, members of the Src family of tyrosine kinases, e.g., Src, Fgr, Fyn, Yes, Blk, Hck, Lck and Lyn, as well as other protein tyrosine kinases, including, Bcr-abl, Jak, PDGFR, c-kit and Ephr. These polynucleotides have been shown, through a weighted voting cross validation program, to have utility in predicting the resistance and sensitivity of lung cell lines to the compounds. The expression level of some polynucleotides is regulated by treatment with a particular protein tyrosine kinase inhibitor compound, thus indicating that these polynucleotides are involved in the protein tyrosine kinase signal transduction pathway, e.g., Src tyrosine kinase. Such polynucleotides, whose expression levels correlate highly with drug sensitivity or resistance and which are modulated by treatment with the compounds, comprise polynucleotide predictor or marker sets useful in methods of predicting drug response, and as prognostic or diagnostic indicators in disease management, particularly in those disease areas, e.g., lung cancer, in which signaling through the protein tyrosine kinase pathway, such as the Src tyrosine kinase pathway, is involved with the disease process.
Owner:BRISTOL MYERS SQUIBB CO

Methods of treatment and diagnosis using modulators of virus-induced cellular gene sequences

InactiveUS20070087982A1Reduce expressionReducing and preventing expression of mRNABiocideGenetic material ingredientsDiseaseImmunodeficiency virus
Applicants have used microarrays, gene expression profiling, and gene silencing methods to identify and provide a plurality of ‘validated’ virus-induced cellular gene sequences (e.g., HMG20B, HRH1, NP and c-YES (src family kinases)) and pathways useful as therapeutic targets for modulation of viral-mediated cellular effects. Particular embodiments provide therapeutic compositions, and methods for modulation of viral infection, replication, maturation, progression, or other virally-related conditions or diseases, comprising inhibition of virally-induced gene sequences and gene products. Additional embodiments provide screening assays for compounds useful to modulate viral infection, replication, maturation or progression, or viral-related conditions or diseases. Further embodiments provide diagnostic and/or prognostic assays for viral infection, replication, maturation or progression. Preferably, the viruses all selected from the group consisting of retroviruses (e.g., human immunodeficiency virus (HIV), and viruses of the family Flaviviridae that includes the flaviviruses (e.g., West Nile virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus (YFV) and Dengue fever virus (DEN)), and hepatitis C virus (HCV).
Owner:OREGON HEALTH & SCI UNIV

Construction method for streptomycete expression plasmids and production method for keratinase

The invention relates to a construction method for streptomycete expression plasmids and a production method for keratinase. The construction method for streptomycete expression plasmids includes the following steps: a promoter Xi of actinoplanes missouriensis xylose isomerase and a terminator of streptomycete avermitilis amylase are sleeved, and the promoter-shine-dalgarno (SD) sequence comes from 90 to 269bp of an actinoplanes missouriensis xylose isomerase gene; a cloned src family kinases (sfks) gene is inserted in a construction expression frame structure of a synthetic Xi promoter-SD-amyA2 terminator fragment, and then a conventional method is used for constructing the streptomycete expression plasmids. The production method for keratinase includes: leading the streptomycete expression plasmids into an expression host of streptomycete lividans TK24 through conjugal transfer, performing recombinant expression and generating the keratinase. Specific activity of a crude enzyme solution is 1700 U/mg after expression of the expression plasmids in the streptomycete lividans TK24 and is improved by 50 times compared with specific activity of starting strain streptomycete fradiae varieties S-221, and yield of the keratinase is much higher than starting strains after the expression.
Owner:SHANGHAI JIAO TONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products