Low-profile dome-shaped multi-lens system
a multi-lens, low-profile technology, applied in the direction of optical radiation measurement, instruments, nuclear engineering, etc., can solve the problem of difficult to determine a precise motion detection at the peripheral sensitive areas
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
first embodiment
Referring now to FIGS. 1 and 2, there is shown a multi-lens system in accordance with a first embodiment of the present invention. The system comprises a dome-shaped shell 10 with a plurality of convex lenses 31, 32, and 33 which provide a wide panoramic field of view from a focal region 20 in which an optical detector 40 is disposed for receiving infrared radiation through the individual lenses.
As shown in FIG. 3, the optical detector 40 comprises two pairs of sensing elements 41 and 42 of square configuration and opposite polarity arranged in a square matrix on a radiation receiving surface of the detector 40. The sensing elements are of 0.5 mm square and spaced by 0.5 mm from each other to give output indicative of intensity of the infrared radiation received through the lenses to a known electric circuit for motion detection based upon the fluctuation of the intensity of the infrared radiation. The sensing elements 41 and 42 of opposite polarity give outputs of opposite polarity...
second embodiment
Referring to FIGS. 11 and 12, there is shown a multi-lens system in accordance with a second embodiment of the present invention. The lens system of this embodiment is identical in configuration and operation to the first embodiment except that the outer surface of a dome-shaped shell 10A is formed as a smoothly curved surface coincidence with an ellipsoidal surface. Thus, the lenses 31A, 32A, and 33A are of biconvex configuration defined by the common outer curved surface and different inner curved surfaces. A like optical detector 40A is disposed at a center of the ellipse as in the first embodiment.
third embodiment
FIGS. 13 and 14 show a multi-lens system in accordance with a third embodiment which is similar to the first embodiment except that a domed-shell 10B is of a spherical configuration having an outer curved surface 11B coincident with a part of a sphere having a spherical center C. A like optical sensor 40B is located at a position offset from the center C towards a vertex of the shell 10B. As shown in FIGS. 13 and 14, the lenses 31B, 32B, and 33B have the respective principal points H1, H2 and H3 located on a spherical plane 11B of the shell 10B at different angles about a common point P1 on the optical detector 40B so that the lenses at a greater angular disposition is spaced by a greater distance from the common point P1. In detail, the outer surface 11B of the shell 10B has a radius (r) of 10.13 mm from the spherical center C, and the common center P1 is offset by a distance (d) of 3.62 mm from C towards the vertex. The focal lengths f1, f2 and f3 of the lenses 31B, 32B and 33B ar...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com