Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Composition for treating groundwater contamination

Active Publication Date: 2008-03-04
CCY PROD
View PDF12 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011]The composition, in a mixture with water, can be applied to remediate contaminated groundwater, such as groundwater contaminated with halogenated organic compounds. Thus, the invention concerns a method for remediation of contaminated groundwater comprising the steps of forming a mixture of the composition with water, and, optionally, a free iron source and / or acid, and applying the mixture to a plume of contaminated groundwater. The phospholipid provides a carbon food source for the indigenous microorganisms existing in the subsurface environment of the groundwater. The mixture, particularly the phospholipid in the mixture, is metabolized by the indigenous microorganisms to generate hydrogen ions (H+) which break down the contaminants in the groundwater via a natural process known as reductive dechlorination. Accordingly, the invention provides an effective means to remove contaminants from groundwater in situ in the aquifer.

Problems solved by technology

The in-situ methods discussed above (i.e. chemical oxidation and bioremediation) are considered cost effective remedial alternatives, particularly when conventional pump and treat methods are ineffective because a particular geological system has low permeability.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 2

[0026]Thirty grams of a composition of 90% lecithin and 10% polyoxyethylene (20) sorbitan monoleate was combined with 250 grams of water to form a mixture comprising 10.7% of the composition and 89.3% water. Ten milliliters of this mixture was then added to 500 milliliters of groundwater containing carbon tetrachloride (CCl4). The groundwater was observed for 40 days, with the analysis of the content of carbon tetrachloride, chloroform, dichloromethane and chloromethane conducted prior to adding the mixture (0 day) and at 5, 20 and 40 days of treatment. The analytical results reflected in parts per billion are set forth in Table 2.

[0027]

TABLE 2Time =Time =CompoundTime = 0 dayTime = 5 days20 days40 daysCCl452,5009,100710291Chloroform1,5502,4802,4901,340Dichloromethane57.125.526.8Chloromethane9.76

example 3

[0028]The use of a free iron source in conjunction with a composition of 90% lecithin and 10% polyoxyethylene (20) sorbitan monoleate in treating groundwater contaminated with carbon tetrachloride was evaluated in this example. The free iron source was technical grade ferric chloride (iron (III) chloride solution) from Coyne Chemical, Croydon, Pa., USA. Information available from the manufacturer indicates that this technical grade ferric chloride has, on average, 32% to 45%, by weight of the iron (III) chloride solution, ferric chloride and less than 3%, by weight of the iron (III) chloride solution, hydrochloric acid with the balance being water.

[0029]Ten milliliters of a mixture comprising 77.4% water, 9.3% of the composition (90% lecithin and 10% polysorbate 80) and 13.3% of the technical grade ferric chloride from Coyne Chemical was added to 500 milliliters of groundwater containing carbon tetrachloride (CCl4). The groundwater was observed for 40 days, with analysis of the cont...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A composition comprising phospholipid and surfactant for remediating water, such as groundwater, contaminated with halogenated organic compounds. The composition may further comprise a free iron source. The composition is used in a method for remediating contaminated water, such as groundwater, through bioremediation.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]The invention pertains to a composition comprising phospholipid, surfactant and, optionally, iron compounds, for treating groundwater contamination. The invention further concerns a method for remediation of contaminated groundwater through bioremediation comprising the step of applying, at least, the composition to contaminated groundwater. The composition and method may be used for treating groundwater contaminated with halogenated organic compounds, such as chlorinated ethenes and methanes, as well as other types of contaminants.[0003]2. The Related Art[0004]Groundwater contamination can be remediated by physical means, such as the removal of contaminated groundwater from an aquifer followed by removal of contaminants, i.e. pump and treat methods. Other methods, such as in situ remediation techniques through chemical oxidation and bioremediation have also been developed.[0005]Pump and treat methods generally involve ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): A23L1/236A23L27/30
CPCB09C1/002C02F5/14C02F2101/36C02F2103/06
Inventor YIM, CHAN S.
Owner CCY PROD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products