Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Microplate assembly and closure

a microplate and assembly technology, applied in the field of sample handling and storage assembly, can solve the problems of increasing cross contamination between wells, manual labor, and many applications, and achieve the effect of quick and easy application

Inactive Publication Date: 2003-11-11
WHEATON INDS
View PDF11 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

Therefore and object of the present invention is to provide a microplate assembly with a closure which can be quickly and easily applied to a plurality of the sample containers of the microplate.
Another object of the present invention is to provide a microplate assembly with closure which reduces cross contamination of samples.
A further object of the present invention is to provide a microplate assembly with closure which improves chemical inertness as compared to using wells of plastic microplates.
Yet another object of the present invention is to provide a microplate assembly with closure which is low in cost, rugged and reliable.
The microplate assembly with closure of the present invention comprises a microplate base having a plurality of wells arranged in a geometric pattern. Glass vials having the quality of good chemical inertness are insertable into the wells of the microplate base. Caps, preferably integral with a flexible or semi-rigid membrane and in the geometric pattern of the microplate base wells, are placed over the vials. The caps comprise a sidewall. The inner diameter of the sidewall engages an outside surface of the glass vials. The caps have a septum opening and septum comprising a resealable portion and a barrier portion. The septum allows insertion of a probe such as a hypodermic needle for filling and retrieving samples while the caps are engaged on the vials. A vial seal of chemically inert material prevents contact of the sample and the septum seal.
In the preferred embodiment, a standard 96 well microplate base is utilized. Vials are made of borosilicate glass for inertness and long life. The vials have an outer diameter selected to make them insertable into the wells of the microplate base. The vials may be flanged, plain or serum finish. The closure comprises 96 caps arranged in the same geometric pattern as the wells of the microplate base. The caps are integrally formed with a membrane connecting the caps. The caps fit over the outer diameter of the vials and comprise a vial or flange engagement ring to retain the cap on the vial.

Problems solved by technology

Despite improvements in sample handling equipment, many applications require manual labor when performing evolutions such as preparing sample containers or vials, or covering or uncovering the samples.
This is especially the case when sample numbers are insufficient to justify design and building of custom automated equipment.
One of the problems arising from this technique is cross contamination of samples due to the base of sample migration across the top surface of the microplate.
Also, the use of adhesive web closures to cover multiple wells further increases cross contamination between wells.
Due to the high cost of making microplates of glass, use of plastics has become common.
These units suffer the additional problem of contamination of samples due to the fact that most plastics are less inert to sample solvents than glass.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Microplate assembly and closure
  • Microplate assembly and closure
  • Microplate assembly and closure

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

The following is a description of the preferred embodiments of a microplate assembly with closure that provides for sealing and sampling a plurality of sample vials in the microplate.

FIG. 1 is a perspective drawing of embodiment 100 of the microplate assembly with closure. Microplate 101 comprises a plurality of wells 103 arranged in a geometric pattern. In the preferred embodiment, the geometric pattern is a rectangular array eight wells in width and 12 wells in length. In the preferred embodiment, wells 103 are 6.2 millimeters in diameter (nominal dimensions) and the spacing of wells 103 in the length and width directions is 9 millimeters. In other embodiments, microplates of different numbers of wells or geometric patterns of wells are used. In the preferred embodiment, microplate 101 is made of a plastic material such as polyethylene or polypropylene. In other embodiments, microplate 101 is made of metal, composites, or glass. Microplate 101 may be machined, die cast or injectio...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A microplate assembly with closure comprises a microplate base 101 having a geometric array of wells 103. Vials 113 of borosilicate glass inserted into the wells comprise flanges on the top portion of the vials. Closure 117 comprises an array of caps 119 having a complementary geometric pattern to the wells of the microplate base. The caps each comprises a septum and are connected by a thin membrane 121. Each cap comprises a sidewall 403 having a vial engagement ring which snaps over the flange 115 of the vials. Septum openings 135 in the caps extend through the top of the caps and provide a means to fill and evacuate the vials with a penetration device passing through the septa of the caps of the closure.

Description

BACKGROUND OF THE INVENTIONThe present invention relates to sample handling and storing assemblies and, more particularly, to microplate assemblies.The growth in medical and pharmaceutical research as well as diagnostic analysis and testing has created a need for equipment and procedures for low cost, efficient handing of samples. Automated equipment is available for filling and retrieval of samples from sample containers.Microplates comprising a plurality of sample wells have provided a convenient means to store samples. Automated equipment is available to position microplates for sample filling, retrieving, and analysis. Despite improvements in sample handling equipment, many applications require manual labor when performing evolutions such as preparing sample containers or vials, or covering or uncovering the samples. This is especially the case when sample numbers are insufficient to justify design and building of custom automated equipment.Normally the wells of microplates are ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B01L3/00B01L3/14
CPCB01L3/50825B01L3/50853B01L2300/042B01L2300/044B01L2300/0829
Inventor GAMBLE, KIMBERLY R.
Owner WHEATON INDS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products