Key expansion for qkd

a key expansion and key technology, applied in the field of quantum cryptography, can solve the problems of limited data bandwidth, low data bandwidth achievable, and low secure key rate of qkd system, and achieve the effect of increasing the number of keys and reducing the number of keys

Inactive Publication Date: 2006-03-16
MAGIQ TECH INC
View PDF6 Cites 81 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

As a consequence, an eavesdropper (“Eve”) that attempts to intercept or otherwise measure the quantum signal will introduce errors into the transmitted signals, thereby revealing her presence.
The secure key rate from a QKD system is usually too low for commercially available data transmission lines if one-time pad encryption is being used.
Also, the achievable data bandwidth is very low and is limited by the key generation rate, which is around 1-10 kbps with present technology.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Key expansion for qkd
  • Key expansion for qkd
  • Key expansion for qkd

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0021] The present invention has industrial utility in the fields of quantum cryptography, quantum key distribution, and data encryption. In particular, the present invention has industrial utility in combining quantum, cryptography and classical cryptography. The present invention provides protection from not only eavesdroppers that utilize passive tapping of transmitted information from a carrier such as, but not limited to, an optical photon, but from any type of intrusion attack including involved active types of attacks wherein an eavesdropper probes the Alice and Bob nodes (stations) using a probe signal sent through an optical fiber used to transmit data.

[0022] As described in greater detail below, the present invention includes a method for generating a cryptographically secure key between two stations. An example method includes exchanging single photon signals between two QKD stations to establish a plurality of matching raw keys at each station. The method also includes ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method of encrypting information using an encryption pad based on keys exchanged between quantum key distribution (QKD) stations is disclosed. The method includes establishing raw keys between two stations using QKD, processing the keys to establish a plurality of matching privacy amplified keys at each station and buffering the keys in a shared key schedule. The method also includes the option of expanding one or more of the keys in the shared key schedule using a stream cipher to create a supply of expanded keys that serve as pads for one-time-pad encryption.

Description

CLAIM OF PRIORITY [0001] This patent application claims priority from U.S. Provisional Patent Application No. 60 / 445,805, filed on Feb. 7, 2003.TECHNICAL FIELD [0002] The present invention relates to quantum cryptography, and in particular relates to key expansion methods applied to keys established between quantum key distribution (QKD) stations for the purpose of forming one-time pads for sending encrypted information between the QKD stations. BACKGROUND ART [0003] Quantum key distribution involves establishing a key between a sender (“Alice”) and a receiver (“Bob”) by using weak (e.g., 0.1 photon on average) optical signals transmitted over a “quantum channel.” The security of the key distribution is based on the quantum mechanical principal that any measurement of a quantum system in unknown state will modify its state. As a consequence, an eavesdropper (“Eve”) that attempts to intercept or otherwise measure the quantum signal will introduce errors into the transmitted signals, ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H04L9/00H04L7/00H04L9/08
CPCH04L7/0008H04L9/0858H04L7/0075
Inventor BERZANSKIS, AUDRIUSTRIFONOV, ALEXEI
Owner MAGIQ TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products