Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Heat pump system with extended run time boost compressor

a heat pump and compressor technology, applied in the field of heat pump systems with extended run time boost compressors, can solve the problems of increasing the difficulty of drawing heat from the outdoor environment, reducing the energy cost of consumers, and increasing the difficulty of conventional heat pump systems in colder climates. achieve the effect of increasing the heating capacity and easily diverting hea

Inactive Publication Date: 2008-10-30
ELECTRO IND
View PDF8 Cites 10 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

"The present invention provides a heating system with increased capacity using a primary compressor, boost compressors, and four heat exchangers for indoor air, hydronic floor heating, and tap water heating. The system includes a control system that prevents unsafe operating parameters, ensures comfortable indoor heating and cooling, and maximizes energy utilization. The system also includes a backup heating source and load management control for remote shutdown by a utility company. The technical effects of the invention include increased heating capacity, efficient energy utilization, and improved comfort and control."

Problems solved by technology

Heat pump systems are also highly efficient, resulting in decreased energy costs to the consumer.
The use of conventional heat pump systems in colder climates, however, presents significant challenges.
At very low temperatures it becomes increasingly difficult to draw heat from the outdoor environment.
In addition, at low temperatures, the outdoor heat exchange coil is very susceptible to frost build up, which limits air flow across the coil.
As a result, the performance and efficiency of heat pump systems decreases drastically at very low ambient temperatures when heating capacity is most needed.
Single compressor systems have been utilized that can provide heating at low to moderate ambient temperatures, but such systems typically demonstrate decreased efficiency and performance at higher ambient temperatures relative to systems with less heating capacity.
Additionally, such systems must cycle on and off frequently at higher ambient temperatures, resulting in a reduced lifespan for the compressor and decreased system efficiency.
Variable speed compressors have been used to address this problem, but these types of compressors are expensive and lead to increased installation costs for the system.
These control methodologies, however, may lead to frequent calls for changes in compressor output, which will cause one or both of the compressors to cycle on and off.
Prior art systems, however, have not effectively integrated control of the back up heating system with the control of the heat pump system.
As a result, the back up heating system, which performs at lower efficiency, is over utilized as compared to the heat pump system, leading to increased energy costs.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Heat pump system with extended run time boost compressor
  • Heat pump system with extended run time boost compressor
  • Heat pump system with extended run time boost compressor

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

System Design

[0065]FIG. 1 is a schematic of the preferred embodiment of the heating and cooling system 10 of the present invention. The primary components of the system include a primary compressor 12, a first booster compressor 14, a second booster compressor 16, a hydronics condenser 18, a indoor air heat exchanger 20, a water tank condenser 22, a boost condenser 24, an evaporator 26, an accumulator 28, and a 4-way valve 30.

[0066]The primary compressor 12 is preferably a scroll-type two-speed compressor that may be operated at two discrete discharge pressure settings. The first and second booster compressors (14 and 16) are preferably single-speed compressors of varied discharge capacities that may be operated at a single discharge pressure setting. The primary compressor may be operated in series with the booster compressors operating in parallel. One or both of the booster compressors (14 and 16) may be bypassed.

[0067]In heating and cooling modes, compressed refrigerant from the...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A heat pump system is disclosed that utilizes a primary compressor, a booster compressor, and a controlled heat exchanger heat exchanger fluidly connected between the boost compressor output and the primary compressor input. The controlled heat exchanger functions to reduce the temperature of the refrigerant entering the primary compressor, thereby allowing the booster compressor to operate for longer periods without overheating the primary compressor. Increasing compressor run times improves both the heat pump efficiency and extends the compressor lifespan. The heat energy may be diverted away from the primary compressor to a hydronics system for heating an indoor space. Additionally, heat energy may be withdrawn from the hydronics system to defrost the outdoor coil of the heat pump system. The periods of compressor inactivity may also be extended by withdrawing heat energy stored in a hydronics tank.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application is a Continuation-in-Part of application Ser. No. 11 / 589,621 entitled “Heat pump system and controls” filed Oct. 30, 2006, a Continuation-in-Part of application Ser. No. 11 / 126,660 entitled “Heating / Cooling System” filed May 11, 2005 that claims priority to Provisional Application Ser. No. 60 / 570,402 entitled “Heat pump” filed May 12, 2004, the contents of which are all incorporated herein by reference.FIELD OF THE INVENTION[0002]The present invention relates generally to heating and cooling systems and more specifically to a heating and cooling system with multiple compressors, multiple heat outputs, and the control system for managing the system.BACKGROUND OF THE INVENTION[0003]Heat pump systems have found widespread application for heating and cooling homes and businesses. Because heat pump systems utilize the same primary components for both heating and cooling, they eliminate the need for separate heating and cooling...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): F25B41/00
CPCF25B1/10F25B13/00F25B29/003F25B40/04F25B47/025F25B2313/003F25B2313/008F25B2313/0234F25B2313/02741F25B2339/047F25B2400/0401F25B2400/0403F25B2400/13F25B2600/0252F25B2600/2509F25B2700/1931F25B2700/2104F25B2700/2106F25B2700/21152F25B2700/21161
Inventor SEEFELDT, WILLIAM J.
Owner ELECTRO IND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products