Method for preparing catalyst for glycerin dehydration, and method for preparing acrolein
a technology of glycerin and catalyst, which is applied in the direction of catalyst activation/preparation, metal/metal-oxide/metal-hydroxide catalyst, etc., can solve the problems of rapid reduction of catalytic activity and limit the use of catalysts for the production of acrolein with high purity, and achieves the effects of improving acrolein selectivity, reducing by-product formation, and high catalytic activity during reaction
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
[0040]A predetermined amount (7.723 g) of cerium nitrate (Ce(NO3)2.6H2O, YAKURI, 98.0%) was dissolved in 8 ml of distilled water in a beaker so as to prepare a cerium precursor solution. Further, 3.366 g of citric acid (YAKURI, 99.99%) at the same molar equivalent as cerium nitrate was dissolved in 4 ml of distilled water in another beaker so as to prepare a citric acid solution. Then, the cerium nitrate solution and the citric acid solution thus prepared were mixed with each other, and stirred for 30 minutes to completely mix the two solutions. While the mixed solution was heated and stirred at a temperature of 70° C., distilled water in the solution was evaporated to form a sol, and the sol thus formed was continuously heated for about 3 hours to form a gel. After gel formation, 2.211 g of phosphate (H3PO4 DAEJUNG, 85%) solution at an equivalent weight of 1.1 was added dropwise. Then, the gel was allowed to swell by continuous heating and stirring, and dried in an oven at 170° C. ...
example 2
[0041]A predetermined amount (0.565 g) of cerium nitrate (Ce(NO3)2.6H2O, YAKURI, 98.0%) and 0.739 g of citric acid (YAKURI, 99.99%) at the same molar equivalent as cerium nitrate were mixed with each other, and then a cerium precursor and citric acid which were weighed so as to correspond to the pore volume of 2.7 g of silica (SYLOPOL, SP948) as a carrier were dissolved in distilled water. Then, the precursor solution thus prepared was added to 2.7 g of the silica carrier and the solution was allowed to be absorbed into the pores of the carrier by stirring. Thereafter, distilled water remaining in the pores was completely removed by drying in an oven at 110° C. for 5 hours or longer. A phosphate solution prepared by dissolving 2.294 g of phosphate (H3PO4 DAEJUNG, 85%) at an equivalent weight of 2 in distilled water in a volume corresponding to the pore volume of the carrier was also supported in the same manner, and dried in an oven at 110° C. for 12 hours or longer, and then calcin...
examples 3 to 5
[0042]A 15 wt % CePO4 / SiO2 catalyst was prepared in the same manner as in the method for preparing the supported catalyst of Example 2, except that the molar ratio of cerium nitrate and phosphate was changed to 1:3 (Example 3) or 1:4 (Example 4).
PUM
Property | Measurement | Unit |
---|---|---|
temperature | aaaaa | aaaaa |
temperature | aaaaa | aaaaa |
temperature | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com