Distributed switches to suppress transient electrical overstress-induced latch-up

a technology of distributed switches and latches, applied in the field of electronic systems, can solve the problems of electrical overstress events in certain electronic systems, damage or destroy integrated circuits (ics), and increase ic temperature, and achieve the effect of suppressing transient electrical overstress-induced latches

Active Publication Date: 2018-08-09
ANALOG DEVICES INC
View PDF3 Cites 19 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004]Distributed switches to suppress transient electrical overstress-induced latch-up are provided. In certain configurations, an integrated circuit (IC) or semiconductor chip includes a transient electrical overstress detection circuit that activates a transient overstress detection signal in response to detecting a transient electrical overstress event between a pair of power rails. The IC further includes mixed-signal circuits and latch-up suppression switches distributed across the IC, and the latch-up suppression switches temporarily clamp the power rails to one another in response to activation of the transient overstress detection signal to inhibit latch-up of the mixed-signal circuits.
[0005]In one aspect, an integrated circuit is provided. The integrated circuit includes a first power rail, a second power rail, one or more electrical overstress detection circuits configured to activate at least one transient overstress detection signal in response to detecting a transient electrical overstress event between the first power rail and the second power rail, a plurality of distributed mixed-signal circuits powered by the first power rail and the second power rail, and a plurality of distributed latch-up suppression switches electrically connected between the first power rail and the second power rail. Additionally, when the integrated circuit is powered, the plurality of distributed latch-up suppression switches are operable to clamp the first power rail and the second power rail in response to activation of the at least one transient overstress detection signal to inhibit latch-up of the plurality of distributed mixed-signal circuits.
[0006]In another aspect, a method of inhibiting latch-up in an integrated circuit is provided. The method includes powering a mixed-signal circuit using a first power rail and a second power rail, activating a transient overstress detection signal in response to detecting a transient electrical overstress event between the first power rail and the second power rail, turning on a latch-up suppression switch that is electrically connected between the first power rail and the second power rail in response to activation of the transient overstress detection signal, and suppressing latch-up in the mixed-signal circuit by clamping the first power rail and the second power rail using the latch-up suppression switch.
[0007]In another aspect, an interface for a semiconductor chip is provided. The interface includes a first interface pad, a second interface pad, an electrical overstress detection circuit configured to activate a transient overstress detection signal in response to detecting a transient electrical overstress event between the first power rail and the second power rail, a mixed-signal circuit configured to receive power from the first interface pad and the second interface pad, and a latch-up suppression switch electrically connected between the first interface pad the second interface pad. The latch-up suppression switch is operable to clamp the first interface pad and the second interface pad in response to activation of the transient overstress detection signal to inhibit latch-up of the mixed-signal circuit.

Problems solved by technology

Certain electronic systems can be exposed to electrical overstress events, or electrical signals of short duration having rapidly changing voltage and high power.
Electrical overstress events can damage or destroy integrated circuits (ICs) by generating overvoltage conditions and high levels of power dissipation in relatively small areas of the ICs.
High power dissipation can increase IC temperature, and can lead to numerous problems, such as gate oxide punch-through, junction damage, metal damage, and surface charge accumulation.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Distributed switches to suppress transient electrical overstress-induced latch-up
  • Distributed switches to suppress transient electrical overstress-induced latch-up
  • Distributed switches to suppress transient electrical overstress-induced latch-up

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0021]The following detailed description of certain embodiments presents various descriptions of specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways as defined and covered by the claims. In this description, reference is made to the drawings where like reference numerals may indicate identical or functionally similar elements. It will be understood that elements illustrated in the figures are not necessarily drawn to scale. Moreover, it will be understood that certain embodiments can include more elements than illustrated in a drawing and / or a subset of the elements illustrated in a drawing. Further, some embodiments can incorporate any suitable combination of features from two or more drawings.

[0022]Certain electronic systems include electrical overstress protection circuits to protect circuits or components from transient electrical overstress events. To help guarantee that an electronic system is reliable, manufacturers c...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Distributed switches to suppress transient electrical overstress-induced latch-up are provided. In certain configurations, an integrated circuit (IC) or semiconductor chip includes a transient electrical overstress detection circuit that activates a transient overstress detection signal in response to detecting a transient electrical overstress event between a pair of power rails. The IC further includes mixed-signal circuits and latch-up suppression switches distributed across the IC, and the latch-up suppression switches temporarily clamp the power rails to one another in response to activation of the transient overstress detection signal to inhibit latch-up of the mixed-signal circuits.

Description

FIELD OF THE DISCLOSURE[0001]Embodiments of the invention relate to electronic systems, and more particularly, to systems and devices for transient electrical overstress protection and latch-up prevention.BACKGROUND[0002]Certain electronic systems can be exposed to electrical overstress events, or electrical signals of short duration having rapidly changing voltage and high power. Electrical overstress events can include, for example, electrostatic discharge (ESD) events arising from the abrupt release of charge from an object or person to an electronic system.[0003]Electrical overstress events can damage or destroy integrated circuits (ICs) by generating overvoltage conditions and high levels of power dissipation in relatively small areas of the ICs. High power dissipation can increase IC temperature, and can lead to numerous problems, such as gate oxide punch-through, junction damage, metal damage, and surface charge accumulation.SUMMARY OF THE DISCLOSURE[0004]Distributed switches...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H02H7/20H01L23/528H01L27/02H01L27/092
CPCH02H7/205H01L27/0921H01L27/0248H01L23/5286H01L27/0262
Inventor SALCEDO, JAVIER ALEJANDROPARTHASARATHY, SRIVATSANHE, LINFENGZHOU, YUANZHONG
Owner ANALOG DEVICES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products