Fused bicyclic pyrimidine derivatives and uses thereof

a technology of pyrimidine and derivatives, applied in the field of pyrimidine derivatives of fused bicyclic compounds, can solve the problems of limited drugs that can exploit the loss of pyrimidine, and achieve the effect of reducing, slowing, stopping or preventing the activity of a particular biological process

Active Publication Date: 2018-12-27
DANA FARBER CANCER INST INC
View PDF0 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0079]The term “prodrugs” refers to compounds that have cleavable groups and become by solvolysis or under physiological conditions the compounds described herein, which are pharmaceutically active in vivo. Such examples include, but are not limited to, choline ester derivatives and the like, N-alkylmorpholine esters and the like. Other derivatives of the compounds described herein have activity in both their acid and acid derivative forms, but in the acid sensitive form often offer advantages of solubility, tissue compatibility, or delayed release in the mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acid with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a substituted or unsubstituted amine, or acid anhydrides, or mixed anhydrides. Simple aliphatic or aromatic esters, amides, and anhydrides derived from acidic groups pendant on the compounds described herein are particular prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy)alkyl esters or ((alkoxycarbonyl)oxy)alkylesters. C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, aryl, C7-C12 substituted aryl, and C7-C12 arylalkyl esters of the compounds described herein may be preferred.
[0090]A “therapeutically effective amount” of a compound described herein is an amount sufficient to provide a therapeutic benefit in the treatment of a condition or to delay or minimize one or more symptoms associated with the condition. A therapeutically effective amount of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment of the condition. The term “therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms, signs, or causes of the condition, and / or enhances the therapeutic efficacy of another therapeutic agent.
[0091]A “prophylactically effective amount” of a compound described herein is an amount sufficient to prevent a condition, or one or more symptoms associated with the condition or prevent its recurrence. A prophylactically effective amount of a compound means an amount of a therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the condition. The term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.

Problems solved by technology

Unfortunately the duration of response to targeted kinase inhibitors is typically less than 2 years, and most lung tumors do not express an oncogene that is targeted by an available drug.
For example, loss of p53 is a common event in lung cancer, but there are currently limited drugs that can exploit its loss.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Fused bicyclic pyrimidine derivatives and uses thereof
  • Fused bicyclic pyrimidine derivatives and uses thereof
  • Fused bicyclic pyrimidine derivatives and uses thereof

Examples

Experimental program
Comparison scheme
Effect test

example 2

of Compound MFH-2-25-1

[0363]

5-nitro-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (MFH-2-6-1)

[0364]A mixture of 5-nitro-1H-pyrrolo[2,3-b]pyridine (300 mg, 1.84 mmol) and benzenesulfonyl chloride (812 mg, 4.6 mmol) in pyridine (3 mL) was refluxed for 6 hours. Then the reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel (PE / EA=0-50%) to obtain MFH-2-6-1 (530 mg, yield 95%). LCMS (m / z): 304 [M+H]+.

1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-amine (MFH-2-7-1)

[0365]A mixture of MFH-2-6-1 (530 mg, 1.75 mmol) and 10% Pd / C (50 mg) in MeOH (20 mL) was stirred overnight at room temperature with an H2 balloon. The mixture was filtered through CELITE, and solvent was removed to give MFH-2-7-1 (230 mg, yield 48%). LCMS (m / z): 274 [M+H]+.

2-chloro-N-(1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)thieno[3,2-d]pyrimidin-4-amine (MFH-2-8-1)

[0366]A solution of MFH-2-7-1 (230 mg, 0.84 mmol), 2,4-dichlorothieno[3,2-d]pyrimidine (173 mg, 0.84 mmol) and...

example 3

of Compound MFH-2-40-1

[0373]

4-(1-(2-chlorothieno[3,2-d]pyrimidin-4-yl)piperidin-4-yl)morpholine (MFH-2-29-1)

[0374]To a solution of 2,4-dichlorothieno[3,2-d]pyrimidine (300 mg, 1.46 mmol) and DIPEA (227 mg, 1.76 mmol) in DCM (5 mL) was added 4-(piperidin-4-yl)morpholine (274 mg, 1.61 mmol) in DCM (3 mL) dropwise at room temperature. The mixture was stirred at room temperature for 3 hours and then was concentrated under reduced pressure. The residue was purified by silica gel (NH3 / MeOH(1.75N) / DCM=0-20%) to obtain MFH-2-29-1 (496 mg, yield 100%). LCMS (m / z): 339 [M+H]+.

tert-butyl3-(4-(4-morpholinopiperidin-1-yl)thieno[3,2-d]pyrimidin-2-ylamino)phenylcarbamate (MFH-2-32-1)

[0375]A solution of MFH-2-29-1 (496 mg, 1.46 mmol), tert-butyl 3-aminophenylcarbamate (335 mg, 1.61 mmol), 2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (105 mg, 0.22 mmol), K2CO3 (243 mg, 1.76 mmol), and Pd2(dba)3 (201 mg, 0.22 mmol) in tert-Butanol (10 mL) was refluxed for 5 hours under N2 atmosphere. The mix...

example 4

of Compound MFH-2-44-1

[0380]

5-methoxy-1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine (MFH-2-10-1)

[0381]A mixture of 5-methoxy-1H-pyrrolo[2,3-b]pyridine (800 mg, 5.4 mmol) and benzenesulfonyl chloride (1.9 g, 10.8 mmol) in pyridine (8 mL) was refluxed overnight. Then the reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel (PE / EA=0-50%) to obtain MFH-2-10-1 (646 mg, yield 42%). LCMS (m / z): 289 [M+H]+.

1-(phenylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-5-ol (MFH-2-13-1)

[0382]To a solution of MFH-2-10-1 (646 mg, 2.25 mmol) in DCM (20 mL) was added boron trichloride in hexane (1 mol / L, 22.5 ml, 22.5 mmol) dropwise at −15° C. The mixture was warmed to room temperature and the mixture was stirred overnight. After completion, water (50 ml) was added at 0° C. and the aqueous layer was extracted with DCM. The combined organic layers was washed with brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel column chromat...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
w/waaaaaaaaaa
diameteraaaaaaaaaa
diameteraaaaaaaaaa
Login to view more

Abstract

The present invention provides novel compounds of Formula (I), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, prodrugs, and compositions thereof. Also provided are methods and kits involving the inventive compounds or compositions for treating or preventing proliferative diseases (e.g., cancers (e.g., lung cancer, breast cancer, leukemia, lymphoma, melanoma, multiple myeloma, Ewing's sarcoma, osteosarcoma, brain cancer, neuroblastoma), benign neoplasms, angiogenesis, inflammatory diseases, autoinflammatory diseases, and autoimmune diseases) in a subject. Treatment of a subject with a proliferative disease using a compound or composition of the invention may inhibit the aberrant activity of a kinase (e.g. a protein kinase (e.g. a cyclin-dependent kinase (CDK) (e.g. CDK7, CDK12, or CDK13) or a lipid kinase such as a phosphatidylinositol-5-phosphate 4-kinase (PIP4K) (e.g., PI5P4Kα, PI5P4Kβ, or PI5P4Kγ)) in the subject.

Description

RELATED APPLICATION[0001]The present application claims priority under 35 U.S.C. § 119(e) to U.S. provisional application, U.S. Ser. No. 62 / 185,366, filed Jun. 26, 2015, which is incorporated herein by reference.GOVERNMENT SUPPORT[0002]This invention was made with government support under grant number R01CA197329 awarded by The National Institutes of Health. The government has certain rights in the invention.BACKGROUND OF THE INVENTION[0003]Lung cancer is the leading cancer killer worldwide accounting for 1.37 million deaths annually. In the United States, lung cancer causes more deaths than the next three most common cancers combined (colon, breast and pancreatic) and in 2014, an estimated 159,260 Americans will die from lung cancer. Lung cancer arises as a result of environmental exposures, such as smoking, combined with genetic alterations such as deregulation of oncoproteins, including Myc and RAS, and loss of tumor suppressors, such as p53. The vast majority of patients that de...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/519A61K31/437A61K31/34A61K31/381A61K31/166A61K31/167A61K45/06C07D491/048C07D495/04C07D519/00
CPCA61K31/519A61K31/437A61K31/34A61K31/381C07D519/00A61K31/167A61K45/06C07D491/048C07D495/04A61K31/166A61P35/02A61K2300/00
Inventor GRAY, NATHANAEL S.ZHANG, TINGHU
Owner DANA FARBER CANCER INST INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products