Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Radio channel aggregation and segmentation

a technology of radio channel and aggregation, applied in the direction of code conversion, wireless commuication services, electrical equipment, etc., can solve the problems of large amount of power consumption, high cost of providing all this hardware, and high hardware cos

Inactive Publication Date: 2013-05-07
QUALCOMM INC
View PDF11 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011]In a second aspect, due to the use of Block-TDM aggregating / de-aggregating and a suitably designed Digital Low Pass Filter (DLPF) in the de-aggregator, the ADC that processes the aggregated stream is a Delta-Sigma ADC (DSADC) that has desirable noise-shaping qualities and has superior performance as compared to flat ADCs used in conventional CDM-based path-sharing techniques. For still higher performance (less signal degradation of the signal due to aggregation and de-aggregation), an MMSE decoder is used in the de-aggregator rather than the DLPF. A precoder is also optionally used in the aggregator to transform the data in the aggregated stream prior to the data being supplied to the DSADC so that the data is less susceptible to the noise-generating characteristics of the DSADC. DSADC transfer function and noise performance is characterized and the results of the characterization are used to tailor the decoder and the precoder to optimize overall path-sharing performance depending on the characteristics of the particular DSADC used.

Problems solved by technology

Providing this much hardware would be costly and would result in a large amount of power consumption.
Because providing all this hardware is costly and consumes a large amount of power as described above, efforts may be made to use aggregation and de-aggregation techniques to share circuit paths.
The code-modulated scheme described, however, would have undesirably limited performance and / or would be undesirably large and costly to implement in future high performance MIMO LTE-A applications.
This approach, however, involves an undesirably large amount of circuit area and a large amount of power consumption.
Large-bandwidth ADCs in radio receivers such as the receivers of cellular telephone handsets are typically relatively large circuits that consume relatively large amounts of power.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Radio channel aggregation and segmentation
  • Radio channel aggregation and segmentation
  • Radio channel aggregation and segmentation

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0039]FIG. 4 is a high-level simplified diagram of an apparatus 50 (a mobile communication device) that includes a specific embodiment of Block-TDM (Block-Time-Division-Multiplexing) aggregation and de-aggregation circuitry and functionality in accordance with a first novel aspect. The Block-TDM aggregation and de-aggregation structures and methods set forth and described in this patent document see wide applicability to both receivers and to transmitters, and to transceiver devices involving different numbers of antennas, and to transceiver devices involving different numbers of communication carriers and different kinds of analog-to-digital conversion circuitry. The analog and digital functionality of the transceivers may be divided and partitioned in different ways in different embodiments. Block-TDM aggregation and de-aggregation can be performed on signals coming from, or going to, multiple antennas. Block-TDM aggregation and de-aggregation can also be performed on signal paths...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Multiple streams from multiple circuit paths are Block-TDM (Block-Time-Division-Multiplexing) aggregated into a single stream that passes via a single path through processing circuitry capable of handling the aggregated signal. The cost of providing redundant processing circuitry is avoided. After processing in the single path, the resulting signal is Block-TDM de-aggregated to generate multiple streams. Each output stream is substantially the same as if its corresponding input stream had been processed in a separate path using separate processing circuitry. The path-sharing technique is usable to pass multiple streams from multiple radio receivers through one superior Delta-Sigma ADC (DSADC) as opposed to using multiple flat ADCs to process information from the multiple receivers. In one example, the DSADC can be used because the aggregation is Block-TDM-based and the de-aggregator involves a digital low pass filter. In another example, the de-aggregator involves a decoder and the aggregator involves a precoder.

Description

BACKGROUND INFORMATION[0001]1. Technical Field[0002]The present disclosure relates to channel aggregation (i.e., path-sharing) and to channel segmentation (i.e., path-partitioning) in radio circuits.[0003]2. Background Information[0004]Many future radio systems will likely include radio transmitters and / or receivers that communicate using multiple antennas, and communicate with a given antenna over multiple frequency carriers, and that for a given frequency carrier and antenna combination involve separate In-phase (I) and Quadrature phase (Q) signal paths. A straightforward way to implement such a receiver is to provide a separate hardware signal path for each permutation of antenna, frequency carrier, and I / Q signal. For example, in one possible implementation of the LTE-A (Long Term Evolution—Advanced) wireless communication standard an 8×8 MIMO (Multiple-Input and Multiple-Output) transceiver uses eight antennas for receiving. The receiver of the transceiver may receive on any on...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): H04J3/00H04W4/00
CPCH03M3/47
Inventor PAN, CHENGZHIBURKE, JOSEPH P.
Owner QUALCOMM INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products