Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Facial Expression Recognition Method Based on Video Sequence

A facial expression recognition and facial expression technology, which is applied in the field of graphic recognition, can solve the problems of unrobustness to changes in illumination direction and viewing angle, high dimensionality, and susceptibility to illumination interference, etc.

Active Publication Date: 2018-02-06
HEBEI UNIV OF TECH
View PDF3 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the Gabor feature has the disadvantages of high computational complexity, high dimensionality, and susceptibility to light interference; Wang Yubo from Tsinghua University extracted the Haar-like features of face images in 2003, and then used the algorithm based on continuous Adaboost to classify facial expressions
Haar-like geometric features have some advantages of intuition, low dimensionality and strong description ability, but this method is sensitive to edge features and line features, and the feature extraction accuracy is not high. In addition, when the background environment of the image or video is complex, Adaboost classification device will produce a high false recognition
Liao from the University of North Carolina used the dominant local binary model (Dominant LBP, DLBP) and the Gabor method to extract features in 2009, and selected the main features of the LBP algorithm to make the operation faster, and combined the DLBP and Gabor methods Texture classification after feature extraction has achieved good results, but this method has two shortcomings: on the one hand, LBP does not take into account the influence of central pixels in the expression of image texture features; on the other hand, this method does not fully consider Due to the effect of time domain information, part of the information is lost, resulting in unsatisfactory recognition rate
LBP is widely used in the field of expression recognition due to its advantages of gray invariance and rotation invariance, but its disadvantage is that it is difficult to obtain a large spatial support area, and it is not robust to changes in illumination direction and viewing angle. , the performance is not satisfactory in terms of texture classification

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Facial Expression Recognition Method Based on Video Sequence
  • Facial Expression Recognition Method Based on Video Sequence
  • Facial Expression Recognition Method Based on Video Sequence

Examples

Experimental program
Comparison scheme
Effect test

Embodiment

[0061] The present embodiment is based on the facial expression recognition method of video sequence, is a kind of facial expression recognition method utilizing the HCBP-TOP algorithm to extract the dynamic spatio-temporal texture feature of human facial expression sequence, concrete steps are as follows:

[0062] The first step is image preprocessing of facial expression sequences:

[0063] (1) Image cropping of facial expression sequences:

[0064]The facial expression sequence image read from the existing facial expression video sequence database is converted from RBG space to gray space, and the formula (1) adopted is as follows:

[0065] Gray=0.299R+0.587G+0.114B (1),

[0066] Among them, Gray is the gray value, generally ranging from 0 to 255, R is the red component, G is the green component, B is the blue component,

[0067] According to the characteristics of the "three courts and five eyes" of the human face and the geometric model of the human face, the facial exp...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The present invention is based on the human facial expression recognition method of video sequence, relates to the method for recognizing figure, is a kind of human facial expression recognition method that utilizes HCBP-TOP algorithm to extract the dynamic spatiotemporal texture feature of human facial expression sequence, and the steps are: human face Expression sequence preprocessing; use the spatial pyramid segmentation method to process the facial expression sequence images in layers and blocks; use the HCBP‑TOP algorithm to extract the dynamic spatiotemporal texture features of the facial expression sequence images; use the SVM classifier for facial expression training and predict. The method of the invention overcomes the defect that the prior art does not consider the central pixel, ignores local detail information, has low efficiency and recognition accuracy of facial expression recognition, and does not have universal applicability.

Description

technical field [0001] The technical solution of the present invention relates to a method for recognizing graphics, in particular to a method for recognizing human facial expressions based on video sequences. Background technique [0002] Expression is the most effective way in human emotional communication. In recent years, facial expression recognition systems have important applications in fields involving visual systems and pattern recognition, such as psychological research, video conferencing, emotional computing, and intelligent human-computer interaction. and the medical industry. With the comprehensive improvement of human-computer interaction technology, research on how to make computer systems more capable of perceiving human expressions is the focus of artificial intelligence at present, and the research and development of facial expression recognition systems is of great significance. [0003] Early facial expression recognition methods focused on studying fac...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): G06K9/00G06K9/62G06K9/66
CPCG06V40/174G06V30/194G06F18/2411
Inventor 于明郭迎春师硕于洋刘依阎刚邓玉娟
Owner HEBEI UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products