Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

A kind of unsaturated hydrocarbon selective hydrogenation catalyst and preparation method

A hydrogenation catalyst and selective technology, applied in chemical instruments and methods, metal/metal oxide/metal hydroxide catalysts, physical/chemical process catalysts, etc. low activity problem

Active Publication Date: 2022-03-29
YANTAI BAICHUAN HUITONG TECH CO LTD
View PDF3 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

CN200610118522.7 relates to a nickel catalyst with composite pore structure used for selective hydrogenation, which mainly solves the low-temperature activity of the catalyst in the prior art, weak anti-interference ability, low gel capacity, poor stability, and resistance to free water Technical issues with poor performance

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0021] 1. Preparation of nickel-doped lanthanum ferrite

[0022] Under the condition of stirring, dissolve 2.51mol of lanthanum nitrate in 120mL of water, add citric acid and stir to dissolve; then add 4.79mol of ferric nitrate, then add 190g of sodium polyacrylate, and then add an aqueous solution containing 42g of nickel nitrate, continue to stir for 30min, after drying Drying, roasting and grinding to obtain nickel-doped lanthanum ferrite.

[0023] 2. Preparation of silica-alumina carrier

[0024]Add citric acid to 4.5 g of nickel-doped lanthanum ferrite for later use. Add 300g of pseudo-boehmite powder and 25.0g of fenugreek powder into a kneader, add nitric acid, then add 40.2g of sodium polyacrylate nitric acid solution, and mix well, then add nickel-doped lanthanum ferrite, mix well, and get Alumina precursor. Dissolve 5g of sodium polyacrylate in nitric acid, then add 38g of microsilica powder and 50g of pseudoboehmite powder, and stir evenly to obtain a mixture of ...

Embodiment 2

[0028] The preparation of nickel-doped lanthanum ferrite is the same as in Example 1, except that 260g of sodium polyacrylate is added, and the preparation of the silica-alumina carrier is the same as in Example 1. The silica-alumina carrier contains 4.4wt% of silicon oxide, 5.7wt% % nickel-doped lanthanum ferrite, 1.2wt% magnesium, carrier mesopores accounted for 63.8% of the total pores, and macropores accounted for 25.9% of the total pores. The unit content of sodium polyacrylate in the alumina precursor is 3 times higher than the content of sodium polyacrylate in the silicon source-organic polymer mixture. The preparation method of catalyst 2 is the same as that of Example 1. The content of catalyst 2 is 11.4wt% of nickel oxide, 4.75wt% of molybdenum oxide and 1.4wt% of magnesium oxide.

Embodiment 3

[0030] The preparation of nickel-doped lanthanum ferrite is the same as in Example 1, except that 220g of polyacrylic acid is added, and the preparation of the silica-alumina carrier is the same as in Example 1. The silica-alumina carrier contains 8.4wt% of silicon oxide, 2.6wt% The nickel-doped lanthanum ferrite, 2.1wt% magnesium, the support mesopores accounted for 54.9% of the total pores, and the macropores accounted for 33.1% of the total pores. The unit content of polyacrylic acid in the alumina precursor is 3.3 times higher than that in the silicon source-organic polymer mixture. The preparation method of catalyst 3 is the same as that of Example 1. The content of catalyst 3 is 22.3wt% of nickel oxide, 4.1wt% of molybdenum oxide and 0.32wt% of magnesium oxide.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
specific surface areaaaaaaaaaaa
Login to View More

Abstract

The invention relates to a catalyst for selective hydrogenation of unsaturated hydrocarbons. The catalyst comprises a silica-alumina carrier and metal active components nickel, molybdenum and magnesium loaded on the carrier, and comprises the following components based on the total weight of the catalyst: The nickel oxide content is 7-18wt%, the molybdenum oxide content is 3.5-12wt%, the magnesium oxide content is 0.05-2.0%, and the silica-alumina carrier content is 75-91wt%. The mesopores of the carrier account for 3-70% of the total pores, and the macropores account for 1.5-55% of the total pores. The catalyst is prepared by an impregnation method, and the catalyst has good colloid resistance, arsenic resistance, sulfur resistance and water resistance.

Description

technical field [0001] The invention relates to a catalyst for selective hydrogenation of unsaturated hydrocarbons and a preparation method thereof, in particular to a nickel-based selective hydrogenation catalyst for one-stage selective hydrogenation of pyrolysis gasoline. Background technique [0002] Pyrolysis gasoline is an important by-product of steam cracking industrial production of ethylene and propylene, including C5-C10 fractions. The composition of pyrolysis gasoline is very complex, mainly including benzene, toluene, xylene, mono-olefins, di-olefins, straight-chain alkanes, cycloalkanes, and organic compounds of nitrogen, sulfur, oxygen, chlorine and heavy metals, etc., a total of more than 200 components, of which Benzene, toluene, and xylene (collectively referred to as BTX) are about 50-90%, and unsaturated hydrocarbons are 25-30%. According to the characteristics of a large amount of aromatics in pyrolysis gasoline, it has a wide range of uses. It can be us...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): B01J23/883C10G45/00
CPCC10G45/00B01J23/002B01J23/883B01J2523/00B01J2523/22B01J2523/31B01J2523/68B01J2523/847
Inventor 陈明海施清彩陈新忠庄旭森
Owner YANTAI BAICHUAN HUITONG TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products