Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

108results about How to "High hydrogenation selectivity" patented technology

Utilization method of catalytic cracking diesel

The invention relates to a utilization method of catalytic cracking diesel, wherein the method comprises the following steps: (1) separating the catalytic cracking diesel into a component with the boiling point being less than 230 DEG C and a component with the boiling point being more than 230 DEG C; (2) hydrogenering for the component with the boiling point being more than 230 DEG C obtained inthe step (1) under the condition that poly-aromatic hydrocarbon is inverted into monocyclic aromatic hydrocarbon; (3) separating the component with the boiling point being less than 230 DEG C obtained in the step (1) and hydrogenation product obtained in the step (2) to obtain diesel rich in the monocyclic aromatic hydrocarbon, and catalytically cracking the diesel rich in the monocyclic aromatichydrocarbon. In the method, firstly, the catalytic cracking diesel is separated into the component with the boiling point being less than 230 DEG C and the component with the boiling point being morethan 230 DEG C, and then the poly-aromatic hydrocarbon in the component with the boiling point being more than 230 DEG C can be hydro-fined into the monocyclic aromatic hydrocarbon, therefore, the hydrogenation selectivity can be improved, and the FCC gasoline with high content of aromatic hydrocarbon and high octane number can be obtained.
Owner:CHINA PETROLEUM & CHEM CORP +1

Preparation method for after-treatment hydrocracking catalyst

The invention discloses a preparation method for an after-treatment hydrocracking catalyst. The method includes the steps that 1, a hydrocracking catalyst carrier is prepared; 2, the catalyst carrier is steeped in steeping liquid containing active metal components and then dried and calcined at low temperature; 3, after matter capable of changing the arrangement of active metals is dissolved in a solvent according to a certain proportion, the catalyst obtained from the step 2 is steeped in the mixture; 4, materials obtained from the step 3 are dried and calcined for 1-10 hours at the low temperature of 150-400 DEG C, and the final after-treatment hydrocracking catalyst is obtained. The matter capable of changing the arrangement of the active metals is one or more of a phosphoric acid complexing agent, an alcohol amine complexing agent, an aminocarboxylic acid complexing agent, a hydroxy carboxylic acid complexing agent, an organic phosphonic acid complexing agent and a polyacrylic acid complexing agent. The after-treatment hydrocracking catalyst prepared through the method is higher in hydrogenation activity and hydrogenation selectivity, higher in selectivity for middle distillate, and suitable for treating the hydrocracking catalysts composed of various different metals.
Owner:CHINA NAT OFFSHORE OIL CORP +2

Preparation method of catalyst for continuous production of succinic anhydride from hydrogenation of maleic anhydride

The invention provides a catalyst for continuously producing butanedioic anhydride by maleic anhydride hydrogenation. The catalyst is a nickel loaded catalyst prepared by an equivalent-volume impregnation method, wherein in the catalyst, the content of nickel is 13 to 20 weight percent, the content of accelerating agent is 1 to 7 weight percent, and a carrier is a composite oxide of SiO2 and Al2O3 or SiO2-Al2O3. A preparation method for the catalyst comprises the following steps: impregnating impregnation solution blended by ammonia water and active metal salt solution on a carrier subjected to baking pretreatment at a temperature between 400 and 800 DEG C by the equivalent-volume impregnation method to form the catalyst through drying, baking and reducing treatment. The catalyst is applied to continuously preparing the butanedioic anhydride by maleic anhydride hydrogenation on a fixed bed reactor, the conversion rate of maleic anhydride is more than or equal to 99.98 percent, and theselectivity of the butanedioic anhydride is more than or equal to 98.85 percent. The catalyst achieves the technical-scale continuous production of the butanedioic anhydride, and has the advantages of high activity, good selectivity, high yield (more than or equal to 98.83 percent) and long service life.
Owner:SHANXI UNIV

Loaded nickel-indium (Ni-In) intermetallic compound catalyst and preparation method thereof

The invention belongs to the technical field of the catalyst preparation, and in particular relates to a loaded nickel-indium (Ni-In) intermetallic compound catalyst and a preparation method thereof. Adjustable hydrotalcite consisting of components such as nickel magnesium indium-lactate dehydrogenase (NiMgIn-LDHs) and nickel aluminum indium-lactate dehydrogenase (NiAlIn-LDHs) is selected as a precursor, and the hydrotalcite is slowly heated and reduced at a low temperature to prepare the loaded Ni-In intermetallic compound catalyst. The prepared loaded Ni-In intermetallic compound catalyst is adjustable in variety, controllable in granularity, good in dispersion property, high in hydrogenation selectivity, good in heat stability and adjustable in hydrogenation activity and selectivity for different alpha, beta-unsaturated aldehydes. The preparation method has a simple equipment process and high yield and is convenient for the industrialized production. The catalyst is used for catalyzing selective hydrogenation of different alpha, beta-unsaturated aldehydes to produce unsaturated enol, the conversion rate of reactants is high, the selectivity of products is high, and the yield of the unsaturated enol can reach more than 95 percent.
Owner:BEIJING UNIV OF CHEM TECH

Selective hydrogenation catalyst and preparation method thereof

The invention discloses a selective hydrogenation catalyst and a preparation method thereof. In the catalyst, aluminum oxide containing titanium and silicon is taken as a carrier, an active metal ingredient is palladium, an aid ingredient is Mo and / or Co, and the active metal ingredient and the aid ingredient are distributed on the surface of the carrier in an eggshell shape; the aluminum oxide containing the titanium and the silicon is prepared from sodium aluminate, sodium silicate, titanium sulfate and CO2 by a precipitation method; the sodium aluminate and the sodium silicate are subjected to cocurrent flow, the CO2 is introduced to make the pH value constant for precipitation, the titanium sulfate and a NaHCO3 and / or Na2CO3 solution are subjected to cocurrent flow precipitation, and the obtained aluminum oxide containing the titanium and the silicon has large pore volume and specific surface area and high high-temperature stability; in addition, the aid ingredient can interact with the active ingredient palladium, palladium particles are uniformly distributed, and interaction between the palladium and the carrier can be enhanced, so that the loss of the palladium is reduced, the utilization rate of the palladium is improved, and the service life of the catalyst is prolonged.
Owner:CHINA PETROLEUM & CHEM CORP +1

Loaded nickel-indium (Ni-In) intermetallic compound catalyst and preparation method thereof

The invention belongs to the technical field of the catalyst preparation, and in particular relates to a loaded nickel-indium (Ni-In) intermetallic compound catalyst and a preparation method thereof. Adjustable hydrotalcite consisting of components such as nickel magnesium indium-lactate dehydrogenase (NiMgIn-LDHs) and nickel aluminum indium-lactate dehydrogenase (NiAlIn-LDHs) is selected as a precursor, and the hydrotalcite is slowly heated and reduced at a low temperature to prepare the loaded Ni-In intermetallic compound catalyst. The prepared loaded Ni-In intermetallic compound catalyst is adjustable in variety, controllable in granularity, good in dispersion property, high in hydrogenation selectivity, good in heat stability and adjustable in hydrogenation activity and selectivity for different alpha, beta-unsaturated aldehydes. The preparation method has a simple equipment process and high yield and is convenient for the industrialized production. The catalyst is used for catalyzing selective hydrogenation of different alpha, beta-unsaturated aldehydes to produce unsaturated enol, the conversion rate of reactants is high, the selectivity of products is high, and the yield of the unsaturated enol can reach more than 95 percent.
Owner:BEIJING UNIV OF CHEM TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products