Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method of and apparatus for molding multi-layer polymer plastic articles having inner, outer and interior or core layers, with control of relative volumetric flow rates of the inner and outer layers enabling relative shifting of the position of the core layer and control of the relative thickness of the inner and outer layers in the molded articles

a multi-layer polymer and plastic article technology, applied in the direction of food shaping, dough shaping, transportation and packaging, etc., can solve the problems of uneven penetration of the leading edge of the interior core, particularly severe, and affecting the uniform penetration of the interior cor

Inactive Publication Date: 2003-07-03
SWENSON PAUL
View PDF5 Cites 14 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This approach enables the production of multi-layer plastic articles with controlled core layer positioning and thickness, reducing molding cycle times and preventing delamination, while enhancing barrier and scavenger layer performance by optimizing the relative humidity and thickness of layers.

Problems solved by technology

A common problem in multilayer molding is the maintaining of a uniform penetration of the leading edge of the interior core layer, when that layer is not near the zero gradient of the velocity profile of the flowing polymer stream as it flows through a hot runner nozzle and / or into the mold cavity forming the molded article.
This problem of maintaining uniform penetration of the leading edge of the interior core layer when it is not close to the zero gradient of the velocity profile becomes particularly severe when there is the requirement to form the multilayer article with the core layer not centered on the midplane of the article.
In three-material, four-layer preform molding, this leading edge problem also occurs, particularly when the volumetric flow rate of one of the interior core layers is greater than that of the other interior core layer.
Another common current problem also arises in using post-consumer recycled plastic (PCR) in a molded article that consists of layers of two other polymers.
With such 5-layer technology, however, the molding cycle times are significantly longer than if the article had been molded of only one material.
Such 5-layer molded articles, moreover, suffer delamination of the layers if the second polymer has low adhesion to the virgin skin layers and to the central PCR layer.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method of and apparatus for molding multi-layer polymer plastic articles having inner, outer and interior or core layers, with control of relative volumetric flow rates of the inner and outer layers enabling relative shifting of the position of the core layer and control of the relative thickness of the inner and outer layers in the molded articles
  • Method of and apparatus for molding multi-layer polymer plastic articles having inner, outer and interior or core layers, with control of relative volumetric flow rates of the inner and outer layers enabling relative shifting of the position of the core layer and control of the relative thickness of the inner and outer layers in the molded articles
  • Method of and apparatus for molding multi-layer polymer plastic articles having inner, outer and interior or core layers, with control of relative volumetric flow rates of the inner and outer layers enabling relative shifting of the position of the core layer and control of the relative thickness of the inner and outer layers in the molded articles

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0037] In my before-referenced prior co-extrusion patent, at least two-polymer plastic materials are provided as a 3-layer combined flow stream; a first material L which forms the ultimate outer and inner molded covering layers of the ultimate molded product, article or part from the inner and outer flow stream layers (IL and OL), injected as annular streams; and a second material (I) which forms the middle, inner or interior core of the product formed from an injected concentric annular interior stream (IA) encased within the inner and outer annular stream layers of the covering material.

[0038] The preferred apparatus employs a multiple-plastic stream co-extruder as for injection molding cavities in which the extruder is internally provided therewithin and therealong with a restrictor or throttle pin, rod or element that forces combined plastic materials streams, formed with an interior core stream encased in outer and inner stream layers, into corresponding concentric co-extensive...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
volumetric flow ratesaaaaaaaaaa
flexibilityaaaaaaaaaa
penetrationaaaaaaaaaa
Login to View More

Abstract

A novel technique for molding multi-layer polymer plastic articles having inner, outer and interior or core layers by controlling relative volumetric flow rates of the inner and outer layers to enable relative shifting of the position of the core, and also the relative thickness of the inner and outer layers in the molded articles; and with leading, and, where desired, trailing ends of the interior layer flow into the mold cavity substantially positioned on the zero gradient of the velocity profile of the flowing polymer streams.

Description

FIELD[0001] The present invention relates to the co-extrusion of pluralities of flowing polymer plastic streams through nozzle extruders and the like into injection molding and similar apparatus for forming multi-layer plastic articles in which an interior core is encased by inner and outer layers of the article; and, more particularly, to the control of relative volumetric flow rates of the layers for attaining greater flexibility in the properties and relative thickness and positions of the layers in the ultimate article. More specifically, the invention is especially, though not exclusively, useful with co-extrusion processes of the type described in my earlier U.S. Pat. No. 5,914,138, issued Jun. 22, 1999 For Apparatus For Throttle-Valving Control For The Co-Extrusion Of Plastic Materials As Interior Core Streams Encased By Outer And Inner Streams For Molding And The Like.BACKGROUND OF INVENTION[0002] A common problem in multilayer molding is the maintaining of a uniform penetra...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): B29C45/16B29C45/20
CPCB29B2911/1406Y10T428/13B29B2911/1408B29B2911/14093B29B2911/1412B29B2911/14126B29B2911/14146B29B2911/14153B29C45/1607B29C45/1643B29C45/1646B29C2045/1648B29C2045/165B29K2105/253Y10T428/1352B29B2911/14066B29C2949/3009B29C2949/3012B29C2949/3016B29C2949/302B29C2949/3028B29C2949/303B29C2949/3036B29C2949/3038B29C45/16
Inventor SWENSON, PAUL
Owner SWENSON PAUL
Features
  • Generate Ideas
  • Intellectual Property
  • Life Sciences
  • Materials
  • Tech Scout
Why Patsnap Eureka
  • Unparalleled Data Quality
  • Higher Quality Content
  • 60% Fewer Hallucinations
Social media
Patsnap Eureka Blog
Learn More