Method of producing powder metal parts
a technology of metallurgical powder and metal parts, which is applied in the field of producing a material from a metallurgical powder, can solve the problems of consuming a significant amount of time and energy, and achieve the effects of high surface durability, high rolling contact fatigue, and high precision
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example 1
[0035] A powder including 0.60 wt % carbon, 0.7 wt % silicon, 0.13 wt % manganese, 4.4 wt % nickel, 0.85 wt % molybdenum, and the balance being iron was combined by blending, see Table 2. A green compact was formed by molding the powder between 25 to 65 tsi. The green density of the compact was 6.95 g / cc. The green compact was then sintered at 2300° F. for 40 minutes. In the next step the compact is sinter furnace hardened at 1850° F. with fast cooling for 25 minutes. Lastly, the compact was tempered at 400° F. for 60 minutes. The end product, a 25-teeth sprocket displayed an apparent hardness of 37 to 39 HRC and an overall tooth density of 7.07 g / cm3. The tooth rupture of the sprocket were tested to see how much load may be applied before the teeth fail or rupture. In this example the test was conducted using three 0.200″ diameter pins. The result was 7300 lbf to 8300 lbf in comparison to the same part by MPIF FN-0208 powder being made by the double pressed double sintered method a...
example 2
[0037] A powder including 0.55 wt % carbon, 0.7 wt % silicon, 0.13 wt % manganese, 4.4 wt % nickel, 0.85 wt % molybdenum, and the balance being iron was combined by blending as shown in Table 4. A green compact was formed by molding the powder between 25 and 65 tsi. The green density of the green compact was 6.95 g / cc. The green compact was then sintered at 2300° F. for 40 minutes. In the next step the compact is sinter furnace hardened at 1850° F. with fast cooling for 25 minutes. Lastly, the compact was tempered at 400° F. for 60 minutes. The end product, a 17-teeth sprocket displayed an apparent hardness of 38.5 HRC and an overall tooth density of 7.05 g / cm3. The tooth rupture of the sprocket were tested to see how much load may be applied before the teeth fail or rupture. In this example the test was conducted using three 0.187″ diameter pins. The result was 3350 lbf to 4350 lbf in comparison to the same part by MPIF FN-0208 powder being made by the double pressed double sintere...
example 3
[0039] A powder including 0.60 wt % carbon, 0.7 wt % silicon, 0.13 wt % manganese, 4.4 wt % nickel, 0.85 wt % molybdenum, and the balance being iron, was combined by blending as shown in Table 6. A green compact was formed by molding the powder between 25 and 65 tsi. The green density of the green compact was 6.95 g / cc. The green compact was then sintered at 2300° F. for 60 minutes. In the next step the compact is sinter furnace hardened at 1850° F. with fast cooling for 25 minutes. Lastly, the compact was tempered at 400° F. for 60 minutes. The end product, a 26-teeth sprocket displayed an apparent hardness of 40 HRC and an overall tooth density of 7.06 g / cm3. The tooth rupture of the sprocket were tested to see how much load may be applied before the teeth fail or rupture. In this example the test was conducted using three 0.187″ diameter pins. The result was 4740 lbf in comparison to the same part by MPIF FN-0208 powder being made by the double pressed double sintered method and ...
PUM
| Property | Measurement | Unit |
|---|---|---|
| density | aaaaa | aaaaa |
| density | aaaaa | aaaaa |
| density | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
Login to View More - R&D
- Intellectual Property
- Life Sciences
- Materials
- Tech Scout
- Unparalleled Data Quality
- Higher Quality Content
- 60% Fewer Hallucinations
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2025 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com



