Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Heat exchange plate

Inactive Publication Date: 2006-07-27
XENESYS
View PDF6 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011] An object of the present invention, which was made to solve the above-mentioned problems, is therefore to provide a heat exchange plate, which permits to optimize a pattern of irregularity of heat transfer sections to cope with a problem of difference in characteristic properties of fluids that flow on the opposite surfaces of the plate, respectively, and ensure sufficient heat transfer performance, thus obtaining a high heat exchange efficiency.
[0013] According to the first aspect of the present invention, the heat exchange plate has the pattern of irregularity in which the main protrusions and the intermediate protrusions are formed on the metallic plate. When the heat exchange plate is combined to the other heat exchange plate having the same structure so that they face each other on the same side and the tops of the main protrusions of the former plate come into contact with the corresponding tops of the main protrusions of the latter plate, or projections formed on the rear sides of the recesses surrounded by the main and intermediate protrusions of the former plate come into contact with corresponding projections formed on the rear sides of the recesses surrounded by the main and intermediate protrusions of the latter plate, to form a combined unit, and then the thus formed combined unit is combined to the other combined units in the same manner, a gap in which wide and narrow areas repeatedly continue along lines along which the protrusions are aligned on the plate is formed between the respective adjacent two plates. As a result, the gaps having different configuration and size are provided on the opposite surfaces of the plate. Such gaps provide different passages, thus achieving different heat transfer performance. As a result, appropriate selection of the passages in accordance with characteristic property of the heat exchange fluids makes it possible to progress heat transfer between the plate and the respective fluids in a remarkably effective manner, thus providing an effective heat exchange between the heat exchange fluids. In addition, gaps between the protrusions extend linearly on straight lines along which the protrusions are aligned, while expanding and reducing in a repeated manner, to form passage sections so that the passage section intersects the other passage section so as to communicate therewith, thus providing a braided passage structure. Even when a flowing relationship of the heat exchange fluids is based on any one of a parallel flowing system, a counter-flowing system and a cross flowing system, it is therefore possible to cause the heat exchange fluids to behave in flow in substantially the same manner to provide substantially the same heat transfer performance. In addition, even when the heat exchange fluids flow on the basis of any combination of the flowing directions, it is possible to make smoothly heat exchange with low pressure-loss and enhance degree of freedom in design of a heat exchanger, thus providing excellent versatility.
[0015] According to the second aspect of the present invention, the plate is constructed in the combined form of curved bodies by defining each of the main protrusions by the truncated cone and each of the intermediate protrusions by the one or more curved portions. It is therefore possible to reduce pressure loss and achieve smooth flow of the heat exchange fluids and smooth heat transfer, thus improving heat exchange efficiency. In addition, such a curved structure permits dispersion of force applied to the plate, thus enhancing strength to cope with a fluid having a high pressure and improving formability. When seawater is used as one of the heat exchange fluids, which is introduced into the passage between the plates, such a curved structure prevents fouling from attaching thereto, thus avoiding deterioration of performance for a long period of time.
[0017] According to the third aspect of the present invention, the plate is constructed in the combined form of flat surface bodies by defining each of the main protrusions by the truncated pyramid and each of the intermediate protrusions by the one or more flat portions. It is therefore possible to provide an easier design of the heat transfer sections of the plate and easily impart suitable heat exchange properties for the respective heat exchange fluids to the plate. In addition, it is possible to easily manufacture the plate, thus reducing costs.
[0019] According to the fourth aspect of the present invention, the height of the intermediate protrusion is decreased to create variation in configuration of the passages provided on the opposite surfaces of the plate so that the height of the passage provided above the intermediate protrusion is smaller than the height of the passage provided below the intermediate protrusion. As a result, it is possible to create variation in flow rate and flow velocity of the heat exchange fluids respectively flowing the adjacent passages between which the plate is placed. This can cope with a case where the two kinds of heat exchange fluids with which heat exchange is to be made are remarkably different from each other in amounts of the fluids flowing into and discharging from the heat exchanger, to achieve heat transfer without loss, thus improving the heat exchange efficiency. The passage having the smaller height is provided below the intermediate protrusion so as to increase the flowing velocity of the fluid, thus achieving effective progress of heat transfer and more remarkably improving the heat exchange efficiency.
[0021] According to the fifth aspect of the present invention, the heat exchange plate has the pattern of irregularity in which the main protrusions are provided in the form of truncated cone on the metallic plate. When the heat exchange plate is combined to the other heat exchange plate having the same structure so that they face each other on the same side and the tops of the main protrusions of the former plate come into contact with the corresponding tops of the main protrusions of the latter plate, or projections formed on the rear sides of the recesses surrounded by the main protrusions of the former plate come into contact with corresponding projections formed on the rear sides of the recesses surrounded by the main protrusions of the latter plate, to form a combined unit, and then the thus formed combined unit is combined to the other combined units in the same manner, a gap in which wide and narrow areas repeatedly continue along lines along which the main protrusions are aligned on the plate is formed between the respective adjacent two plates. As a result, the gaps having different configuration and size are provided on the opposite surfaces of the plate. Such gaps provide different passages, thus achieving different heat transfer performance. As a result, appropriate selection of the passages in accordance with characteristic property of the heat exchange fluids makes it possible to progress heat transfer between the plate and the respective fluids in a remarkably effective manner, thus providing an effective heat exchange between the heat exchange fluids. In addition, gaps between the protrusions extend linearly on straight lines along which the protrusions are aligned, while expanding and reducing in a repeated manner, to form passage sections so that the passage section intersects the other passage section so as to communicate therewith, thus providing a braided passage structure. Even when a flowing relationship of the heat exchange fluids is based on any one of a parallel flowing system, a counter-flowing system and a cross flowing system, it is therefore possible to cause the heat exchange fluids to behave in flow in substantially the same manner to provide substantially the same heat transfer performance. In addition, even when the heat exchange fluids flow on the basis of any combination of the flowing directions, it is possible to make smoothly heat exchange with low pressure-loss and enhance degree of freedom in design of a heat exchanger, thus providing excellent versatility.

Problems solved by technology

However, a high pressure of the heat exchange fluid flowing between the plates may cause deformation of the gasket member, thus disabling an appropriate separation of the fluids from being ensured or leading to an unfavorable variation in distance between the plates.
In such a case, an effective heat exchange may not be carried out, thus causing a problem.
In view of these facts, the conventional heat exchanger involves a problem that the heat exchange fluids can be utilized only in a pressure range in which the gasket member withstands.
However, such a pattern of irregularity could not achieve a balance of decrease in pressure loss and assured resistance to pressure.
Two kinds of liquids used usually in a heat exchanger are different from each other in chemical composition, resulting not only in difference in characteristic property, but also in quite difference in conditions in use such as pressure and flow rate during a heat exchange process.
It is therefore difficult to apply optimized heat transfer conditions in accordance with difference in temperature and characteristic properties of the two kinds of heat exchange liquids between which heat exchange is to be made through the plate, thus causing a problem of no achievement of effective heat exchange.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Heat exchange plate
  • Heat exchange plate
  • Heat exchange plate

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0044] As shown in the above-mentioned figures, the heat exchange plate 10 according to the present invention is formed of a metallic plate having a rectangular shape. The metallic plate has a pattern of irregularity press-formed thereon, which includes a plurality of main protrusions 11 and a plurality of intermediate protrusions 12. Each of the main protrusions 11 protrude outward from one surface of the plate in the form of a truncated cone so as to be placed at a regular interval in an aligned configuration. Each of the intermediate protrusions 12 is placed in the form of protrusion between the opposing conical surfaces of two main protrusions 11 that are adjacent to each other at the shortest distance. The intermediate protrusion 12 is defined by a curved portion that extends to the opposing conical surfaces of the above-mentioned two main protrusions 11. Each of the intermediate protrusions 12 has a peak portion 12a that is placed in a lower position than the top 11a of the ma...

third embodiment

[0064] As shown in the above-mentioned figures, the heat exchange plate 30 according to the present invention is formed of a metallic plate having a rectangular shape. The metallic plate has a pattern of irregularity press-formed thereon, which includes a plurality of main protrusions 31 and a plurality of intermediate protrusions 32. Each of the main protrusions 31 protrude outward from one surface of the plate in the form of a truncated pyramid so as to be placed at a regular interval in an aligned configuration. Each of the intermediate protrusions 32 is placed in the form of protrusion between the opposing flat surfaces of two main protrusions 31 that are adjacent to each other at the shortest distance. Each of the intermediate protrusions 32 has two mound portions that are placed on a straight line, which is perpendicular to a reference line along which the adjacent two main protrusions 31 are aligned so that the intermediate protrusion 32 is placed between the surfaces of the ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A heat exchange plate includes main protrusions, intermediate protrusions and non-protruded portions. The main protrusions having a truncated cone or pyramid shape are placed in positions based on a pattern on the plate. The intermediate protrusion is placed between two main protrusions that are adjacent to each other at a shortest distance so that the main protrusion is connected to two other main protrusions through two intermediate protrusions. The intermediate protrusion is defined by a flat portion extending to opposing surfaces of the two main protrusions. The intermediate protrusion has a peak portion placed in a lower position than a top of the main protrusion. The non-protruded portion is placed between adjacent intermediate protrusions. The non-protruded portion is placed in a lowest position relative to a protruding direction of the main and intermediate protrusions so as to provide a recess surrounded by the main and intermediate protrusions.

Description

BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates a heat exchange plate, which is formed of a metallic plate and to be used in combination with the other heat exchange plates having the same structure so that they are combined in parallel and integrally with each other to form a heat exchanger, and especially to such a heat exchange plate that permits to provide an integrally combined state for the heat exchanger in which an appropriate heat exchange can be made between heat exchange fluids in correspondence with differences in characteristic property therebetween, while causing the heat exchange fluids to flow along the opposite surfaces of the heat exchange plate, respectively, thus enhancing heat exchange efficiency. [0003] 2. Description of the Related Art [0004] If there is a demand that heat transfer coefficient is increased to enhance heat exchange efficiency, utilizing a heat exchanger by which transfer of heat (i.e., heat exch...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): F28F3/00
CPCF28F3/04F28F3/02F28F3/00F28D9/00F28F3/08
Inventor MATSUZAKI, TOYOAKIWATANABE, TARO
Owner XENESYS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products