Method of controlling chamber parameters of a plasma reactor in accordance with desired values of plural plasma parameters, by translating desired values for the plural plasma parameters to control values for each of the chamber parameters

a plasma reactor and chamber parameter technology, applied in the direction of instruments, fluid pressure measurement, vacuum gauges, etc., can solve the problems of high accuracy of the techniques of measuring etch rate, ion density, wafer voltage and wafer current, and the inability to accurately measure these parameters in “real time”

Inactive Publication Date: 2006-12-14
APPLIED MATERIALS INC
View PDF99 Cites 10 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004] Plural chamber parameters of a plasma reactor are controlled in accordance with desired values of plural plasma parameters, by concurrently translating desired values for the plural plasma parameters to control values for each of plural chamber parameters, and then setting each of the chamber parameters to corresponding ones of the control values.

Problems solved by technology

The main problem is that present techniques for measuring etch rate, ion density, wafer voltage and wafer current tend to be highly inaccurate (in the case of the wafer voltage) or must be performed by examining a test workpiece or wafer at the conclusion of processing (in the case of etch rate).
There appears to be no accurate technique for measuring these parameters in “real time” (i.e., during wafer processing).
If for example the chosen target value of one of the control parameters unexpectedly leads to a deviation from the desired processing parameter (e.g., etch rate), this error will not be discovered until after the current workpiece has been processed and then examined, and therefore the current workpiece or wafer cannot be saved from this error.
As a result, the industry is typically plagued with significant losses in materiel and time.
A related problem is that plasma process evolution and design is slow and inefficient in that the discovery of optimal target values for the reactor control parameters of source power, bias power, chamber pressure and the like typically relies upon protracted trial and error methods.
The selection of target values for the many reactor control parameters (e.g., source power, bias power, chamber pressure and the like) to achieve a particular etch rate at a particular wafer current (to control wafer heating) and at a particular wafer voltage (to control ion bombardment damage) and at a particular ion density (to control etch selectivity, for example) is a multi-dimensional problem.
The mutual dependence or lack thereof among the various reactor control parameters (source power, bias power, chamber pressure, etc.) in reaching the desired target values of the process parameters (e.g., etch rate, wafer voltage, wafer current, ion density) is generally unknown, and the trial and error process to find the best target values for the reactor control parameters (bias and source power levels and chamber pressure) is necessarily complex and time consuming.
Therefore, it is not possible to optimize or alter target values for the process parameters (e.g., etch rate, etc.) without a time-consuming trial and error process.
Thus, real-time plasma process control or management has not seemed possible.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method of controlling chamber parameters of a plasma reactor in accordance with desired values of plural plasma parameters, by translating desired values for the plural plasma parameters to control values for each of the chamber parameters
  • Method of controlling chamber parameters of a plasma reactor in accordance with desired values of plural plasma parameters, by translating desired values for the plural plasma parameters to control values for each of the chamber parameters
  • Method of controlling chamber parameters of a plasma reactor in accordance with desired values of plural plasma parameters, by translating desired values for the plural plasma parameters to control values for each of the chamber parameters

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

Introduction:

[0027] The present description pertains to a plasma reactor having a plasma source power applicator (such as an overhead electrode or antenna) in which plasma bias power is applied to the wafer through the wafer support pedestal. I have discovered a measurement instrument (described below) that is the first one known to instantaneously and accurately measure wafer voltage, wafer current, ion density and etch rate. The measurement instrument uses only conventional electrical sensors at the bias power input that sense voltage, current and power at the output of an impedance match device coupled to the wafer support pedestal. The measurement instrument is therefore non-invasive of the plasma etch process occurring within the reactor chamber in addition to being accurate. The degree of accuracy is surprising, surpassing even the best known instruments and measurement techniques currently in use.

[0028] I have invented a plasma reactor having a feedback controller employin...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
voltageaaaaaaaaaa
bias poweraaaaaaaaaa
bias poweraaaaaaaaaa
Login to view more

Abstract

Plural chamber parameters of a plasma reactor are controlled in accordance with desired values of plural plasma parameters, by concurrently translating desired values for the plural plasma parameters to control values for each of plural chamber parameters, and then setting each of the chamber parameters to corresponding ones of the control values. The translating consists of the following steps: (a) for each one of the chamber parameters, ramping the level of the one chamber parameter while sampling RF electrical parameters at an RF bias power input to the wafer support pedestal and computing from each sample of the RF electrical parameters the values of plural plasma parameters, and storing the values with the corresponding levels of the one chamber parameter as corresponding chamber parameter data; (b) for each one of the chamber parameters, deducing, from the corresponding chamber parameter data, a single variable function for each of the plural plasma parameters having the one chamber parameter as an independent variable; (c) from combinations of the functions, constructing surfaces defining simultaneous values of all of the chamber parameters, each respective surface corresponding to a respective constant value of one of the plural plasma parameters, and storing the surfaces.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation of U.S. application Ser. No. 10 / 440,364, filed May 16, 2003 by Daniel Hoffman, entitled PLASMA DENSITY, ENERGY AND ETCH RATE MEASUREMENTS AT BIAS POWER INPUT AND REAL TIME FEEDBACK CONTROL OF PLASMA SOURCE AND BIAS POWER and assigned to the present assignee.BACKGROUND OF THE INVENTION [0002] Plasma reactors employed in microelectronic circuit fabrication can etch or deposit thin film layers on a semiconductor substrate. In a plasma reactive ion etch process, the etch rate, ion density, wafer voltage and wafer current are critical in controlling etch selectivity, wafer heating, etch striations, ion bombardment damage, etch stopping, feature size and other effects. Such control becomes more critical as feature size decreases and device density increases. The main problem is that present techniques for measuring etch rate, ion density, wafer voltage and wafer current tend to be highly inaccurate (in the c...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): G01L21/30C23F1/00H01J37/32
CPCH01J37/32935H01J37/32174
Inventor HOFFMAN, DANIEL J.
Owner APPLIED MATERIALS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products