Ta sputtering target and method for producing the same

a sputtering target and sputtering technology, applied in the direction of sputtering coating, vacuum evaporation coating, coating, etc., can solve the problems of insufficient methods, insufficient uniform crystalline microstructure of the billet (slab), and insufficient ta sputtering target, so as to improve the uniform crystalline microstructure of the billet without lowering the yield

Inactive Publication Date: 2007-10-18
ULVAC INC
View PDF2 Cites 29 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0027]According to the present invention, the uniformity in the crystalline microstructure of the billet can be improved without lowering the yield in the forging. In addition, by optimizing the conditions for combining the total draft percentage and the vacuum heat treatment during the forging of the billet, Ta sputtering target having a fine and uniform microstructure, as well as the method for producing the same can be provided.

Problems solved by technology

Ta sputtering targets were produced by way of experiments according to these methods, but these methods are not always sufficient for the preparation of a Ta sputtering target having sufficiently fine crystalline microstructure with small scattering of the average grain size.
(1) the forging conditions thereof were inadequate and thus the crystalline microstructure of the billet (slab) was not uniform;
(3) the heat-treating conditions of the plate to be rolled were inadequate.
As a result, the resulting product has a crystalline microstructure insufficient in the uniformity between the outer peripheral portion and the central portion.
If this non-uniformity is more conspicuous, the concave area in the central portion would remain depending on the thickness of the billet even if the subsequent upset-forging operation is carried out and this would become a cause of a considerable reduction in the production yield of such billets.
In other words, in case the aspect ratio (diameter / length) is inadequate with the ingot or at the time of deformation by forging, a stable production by cold forging cannot be made.
As a result, there arises a problem in that the uniformity in the crystalline microstructure cannot be attained, i.e., in that the yield is lowered.
Even if a billet which is high in uniformity in the crystalline structure is prepared, the subsequent lower draft percentage at the time of rolling will result in a failure to obtain, in the subsequent heat treating, a uniform and crystalline microstructure.
On the other hand, even if a billet which is high in uniformity in crystalline microstructure is prepared, too high a draft percentage will give rise to a problem in that the growth into too coarse a grain size of the crystalline microstructure is likely to be accelerated in the subsequent heat treating.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Ta sputtering target and method for producing the same
  • Ta sputtering target and method for producing the same

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0036]First, a Ta ingot having a size of 140 mmφ×200 mmL was subjected to stamp-forging and upset-forging operations alternatively repeated 3 times to thus obtain a primary forged billet, and then the latter was subjected to vacuum heat treatment (not more than 1.3×10−2 Pa; 1050° C.). The resulting primary forged billet was then subjected to the same procedures used in the primary forging step to thus prepare a secondary forged billet. Then the secondary forged billet was subjected to the same vacuum heat treatment used above and thereafter, it was further subjected to a third forging step according to the same procedures used above. The surface of the resulting tertiary forged billet was processed (working with a lathe) to thus remove any defect such as surface defects, cracks and / or fogging or protective covering, then subjected to a cold rolling operation in 4 axial directions at a total draft percentage of 70%. The resulting rolled plate was subjected to a vacuum heat treatment ...

example 2

[0037]The surface-processed tertiary forged billet prepared according to the method described in Example 1 was subjected to a cold rolling operation in 6 axial directions at a total draft percentage of 70%. The resulting rolled plate was subjected to a vacuum heat treatment at 880° C. As a result, it was found that the average grain size on the whole surface of the resulting sputtering target fell within the range from 29 to 36 μm and that the standard deviation of the grain size thereof was found to be 17 μm.

example 3

[0038]The surface-processed tertiary forged billet prepared according to the method described in Example 1 was subjected to a cold rolling operation in 8 axial directions at a total draft percentage of 72% and the resulting rolled plate was subjected to a vacuum heat treatment at 900° C. As a result, it was found that the average grain size on the whole surface of the resulting sputtering target fell within the range from 36 to 42 μm and that the standard deviation of the grain size thereof was found to be 19 μm.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
aspect ratioaaaaaaaaaa
temperatureaaaaaaaaaa
grain sizeaaaaaaaaaa
Login to view more

Abstract

A method for producing a Ta sputtering target including the following steps: (a) a step of forging a Ta ingot, comprising subjecting the Ta ingot to a forging pattern over at least 3 times, wherein each forging pattern is “a cold forging step comprising stamp-forging and upset-forging operations alternatively repeated over at least 3 times; (b) an in-process vacuum heat-treating step carried out between every successive two forging patterns to thus prepare a Ta billet; (c) a step of rolling the Ta billet to obtain a rolled plate; and (d) a step of vacuum heat-treating the rolled plate to obtain a Ta sputtering target. A sputtering target produced by the above method.

Description

TECHNICAL FIELD[0001]The present invention relates to a sputtering target which is subjected to a sputtering processing which is a thin film forming technique, and to a method for the production thereof and, more particularly, to a Ta sputtering target having a uniform crystalline microstructure and a method for the production of the same.BACKGROUND ART[0002]Up to now, in the field of semiconductors, a barrier metal film layer has been formed. Such a barrier metal film layer has conventionally been formed, in the form of a thin film between a wiring films and insulating films. Such a barrier metal film layer has conventionally been formed in the form of a thin film according to, for instance, the sputtering technique. It has therefore been required for the barrier metal film layer to be formed with a thinner and more uniform thickness. For this reason, it has correspondingly been required for the sputtering target used for forming a barrier metal film layer to make the grain size of...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C22F1/18
CPCC22F1/18C23C14/3414
Inventor SATO, MOTONORIKIM, POONGITO, MANABUMASUDA, TADASHI
Owner ULVAC INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products