Low-loss cryostat configuration
a cryostat and low-loss technology, applied in the field of cryostat configuration, can solve the problems of reducing the interval between helium refills, achieving the effect of superconducting short-circuited operation, and producing high magnetic field in short-circuited
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
Embodiment Construction
[0048]FIG. 1 shows an embodiment of an inventive cryostat configuration 10 with one cryostat 11 with supercooled helium. The cryostat 11 consists of a first chamber 1 with supercooled helium (temperature 2 with liquid helium (temperature approx. 4.2 K), that are separated by a thermally insulating barrier 4. In the first chamber 1, a Joule-Thomson valve 3 is disposed through which the helium can expand from the further chamber 2 into the pump-off pipe 13, thus supercooling the first chamber 1. The helium is pumped off from the pump-off pipe 13 by a pump 14 and led to a cryogen pipe 15. In the embodiment depicted, the latter comprises a buffer vessel 18 to provide to the helium an additional volume that can serve as a pressure reserve and / or backflow reserve. A relief valve 6 with a bursting disk 7 prevents an excessive pressure in the cryogen pipe 15 if the pressure regulating device 17 of the branch-off device 16 fails or if the pressure cannot be kept constant for any other reason...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com