Method for stem cell differentiation in vivo by delivery of morphogenes with mesoporous silica and corresponding pharmceutical active ingredients

a technology of mesoporous silica and stem cell differentiation, which is applied in the field of stem cell differentiation in vivo by delivery of morphogenes with mesoporous silica and corresponding pharmceutical active ingredients, to achieve the effects of enhancing cell survival, improving initial survival of transplanted stem cells, and maintaining long-term viability

Inactive Publication Date: 2013-11-28
NANOLOGICA AB
View PDF1 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0029]The present inventors have found that human ESCs can be forced to differentiate to neurons by local delivery of the sonic hedgehog agonist purmorphamine (Pur) and retinoic acid (RA) from mesoporous nanoparticles. This approach may therefore be useful for improving initial survival of transplanted stem cells, as well as for achieving desired differentiation of these cells and maintain their long term viability.
[0030]According to one aspect, the present invention provides a method of enhancing cell-survival during implantation of stem cells.
[0076]An additional source for repair of myocardial contractility are skeletal myoblasts (Nomura T, Ueyama T, Ashihara E, et al. Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-beta family signaling. Biochem Biophys Res Commun 2008; 365:863-9), although they do not seem to be able to differentiate to cardiomyocytes (Reinecke H, Poppa V, Murry C E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002; 34:241-9; Leobon B, Garcin I, Menasche P, et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 2003; 100:7808-11). Intravascular delivery or cardiac transplants of multipotent or pre-differentiated cardiogenic cells from these stem cell sources have been shown to promote cardiac structural repair and functional restoration in animal models of myocardial injury (Fukushima S, Coppen S R, Lee J, et al. Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS One 2008; 3:e3071; Hendry S L 2nd, van der Bogt K E, Sheikh A Y, et al. Multimodal evaluation of in vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells. J Thorac Cardiovasc Surg 2008; 136:1028-37; Matsuura K, Honda A, Nagai T, et al. Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 2009; 119:2204-17; Jin J, Jeong S I, Shin Y M, et al. Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail 2009; 11:147-53; Okura H, Matsuyama A, Lee CM, et al. Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Eng Part C Methods 2010; 16:417-25).
[0152]right: the reduced migration of NCSCs (small circles) towards Islets and increased differentiation of NCSCs in the initial location when they were co-transplanted with AMS (black triangle).

Problems solved by technology

However, addition of multiple FGFs, BMP antagonists and Wnt antagonists to the chick embryonic epiblast is not sufficient to induce the expression of the neural marker Sox2, suggesting that still other pathways regulate neural induction (Linker C, Stern CD.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for stem cell differentiation in vivo by delivery of morphogenes with mesoporous silica and corresponding pharmceutical active ingredients
  • Method for stem cell differentiation in vivo by delivery of morphogenes with mesoporous silica and corresponding pharmceutical active ingredients
  • Method for stem cell differentiation in vivo by delivery of morphogenes with mesoporous silica and corresponding pharmceutical active ingredients

Examples

Experimental program
Comparison scheme
Effect test

example 1

Induced Differentiation of Transplanted Human Embryonic Stem Cells with Shh and Retinoic Acid Delivered with Mesoporous Silica

[0116]Background:

[0117]Embryonic stem cells (ESCs) differentiate into motor neurons, establish functional synapses with muscle fibers, and acquire physiological properties characteristic of embryonic motor neurons when cultured with sonic hedgehog (Shh) agonist and retinoic acid (RA) (Wichterle H, Lieberam I, Porter J A, et al. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002; 110:385-97; Miles G B, Yohn D C, Wichterle H, et al. Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 2004; 24:7848-58). ESC-derived motorneurons transplanted into the developing chick neural tube projected axons toward muscles, received synaptic input, and developed electrophysiological properties similar to endogenous motor neurons (Soundararajan P, Miles G B, Rubin L L, et al. Motoneurons derived from embryonic ste...

example 2

Differentiation of Neural Crest Stem Cells Toward Neuronal Phenotype In Vitro by RA Delivered with Mesoporous Silica

[0129]Background:

[0130]The RA receptor RAR-beta2 is expressed in dorsal root ganglion (DRG) neuron subtypes. It was shown that retinoid signaling has a role in neurite outgrowth in vivo (Corcoran J, Shroot B, Pizzey J, et al. The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J. Cell Sci 2000; 113:2567-74; Dmetrichuk J M, Spencer G E, Carlone R L. Retinoic acid-dependent attraction of adult spinal cord axons towards regenerating newt limb blastemas in vitro. Dev Biol 2005; 281:112-20) by demonstrating that in a peripheral nerve crush model there is less sensory neurite outgrowth in RAR-beta null compared to wild-type mice. In vitro experiments identified sonic hedgehog (Shh) as a downstream target of the RAR-beta2 signaling pathway since it is expressed in the injured DRG of wild-type but not RAR-...

example 3

Differentiation and Migration of NCSCs in the Presence of AMS Under the Kidney Capsule

[0145]Background:

[0146]We previously showed that NCSCs transplanted under the kidney capsule of one pole of the kidney extensively migrate towards co-transplanted pancreatic islets placed in the opposite pole of the same kidney (Olerud J, Kanaykina N, Vasylovska S, et al. Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets. Diabetologia 2009; 52:2594-601. Erratum in: Diabetologia. 2010; 53:396. Vasilovska, S [corrected to Vasylovska, S]; Kozlova E N, Jansson L. Differentiation and migration of neural crest stem cells are stimulated by pancreatic islets. Neuroreport 2009; 20:833-8). The purpose of these previous studies was to develop a new protocol for improved outcome after transplantation of pancreatic islets. Transplantation of pancreatic islets is an established therapy in selected patients with type 1 diabetes. The sur...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
pore sizeaaaaaaaaaa
sizesaaaaaaaaaa
sizeaaaaaaaaaa
Login to view more

Abstract

A pharmaceutical active ingredient for cell differentiation to alleviate cell and cell-related deficiencies in mammals comprising porous silica containing a releasable agent capable of contributing to a cell environment conducive for stem cell differentiation in co-implanted stem cells and / or in endogenous stem cells.

Description

FIELD OF THE INVENTION[0001]The present invention relates to pharmaceutical active ingredients comprising sets composed of stem cells and porous silica, preferably mesoporous silica, containing a defined set of differentiation factors for desired differentiation of different types of cells, and to a method of enhancing survival and control differentiation of transplanted stem cells for regenerative medicine by providing said sets. In particular, the pharmaceutical active ingredients and methods of the invention are preferably used for controlling differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); in general, they are also applicable for other stem cells, e.g. tissue-specific stem cells and mesenchymal stem cells.BACKGROUND OF THE INVENTION[0002]Experimental stem cell research has achieved enormous progress during the past few years in generating desired types of cells in vitro, which can be used in regenerative medicine. These in vitro protoco...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K47/02A61K35/30A61K35/54A61K31/5377A61K31/203A61K35/545
CPCA61K47/02A61K31/5377A61K31/203A61K35/545A61K35/30A61K9/5115A61K31/00A61K38/185A61K38/1709C12N2501/385C12N2501/41C12N2533/14A61K9/1611C12N5/0619C12N2506/02A61P21/00A61P25/00A61K2300/00C12N2500/38C12N2500/46C12N2501/998C12N2506/08C12N2533/00
Inventor GARCIA-BENNETT, ALFONSO E.KOZLOVA, ELENA NICKOLAEVNA
Owner NANOLOGICA AB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products