Metal injection molded projectile

a metal injection molding and projectile technology, applied in the field of ammunition, can solve the problems of long manufacturing time and limit the materials that can be used to form the projectiles

Inactive Publication Date: 2017-03-23
TRUE VELOCITY IP HLDG LLC
View PDF20 Cites 184 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012]The metal composition includes stainless steel, brass, ceramic alloys, copper / cobalt / nickel / custom alloys, tungsten, tungsten carbide, carballoy, ferro-tungsten, titanium, copper, cobalt, nickel, uranium, depleted uranium, alumina oxide, zirconia and aluminum. More specifically, stainless steel, brass, metal alloys, ceramic alloys and even more specifically 102, 174, 201, 202, 300, 302, 303, 304, 308, 309, 316, 316L, 316Ti, 321, 405, 408, 409, 410, 415, 416, 416R, 420, 430, 439, 440, 446 or 601-665 grade stainless steel. The molded metal ammunition projectile may include 1, 2, 3, 4, 5 or more cannelures formed on an outer circumferential surface of the essentially cylindrical bearing surface intermediate the shoulder and the base. The nose may have a frustoconical shape, a frustoconical shape with a cavity to form a hollow point projectile; a spritzer shape; a blunted shape; or rounded shape. The molded metal ammunition projectile may be a full metal jacket, expanding full metal jacket, spritzer, jacketed spritzer, armor piercing, and armor piercing incendiary. The base has a flat shape or a boattail configuration. The molded metal ammunition projectile may include an outer coating placed over the projectile to form a metal jacketed projectile. The molded metal ammunition projectile may have a soft metal core, a high energy core, a high density core, a chemical core, or a combination thereof. The molded metal ammunition projectile may include a) 2-16% Ni; 10-20% Cr; 0-5% Mo; 0-0.6% C; 0-6.0% Cu; 0-0.5% Nb+Ta; 0-4.0% Mn; 0-2.0% Si and the balance Fe; b) 2-6% Ni; 13.5-19.5% Cr; 0-0.10% C; 1-7.0% Cu; 0.05-0.65% Nb+Ta; 0-3.0% Mn; 0-3.0% Si and the balance Fe; c) 3-5% Ni; 15.5-17.5% Cr; 0-0.07% C; 3-5.0% Cu; 0.15-0.45% Nb+Ta; 0-1.0% Mn; 0-1.0% Si and the balance Fe; d) 10-14% Ni; 16-18% Cr; 2-3% Mo; 0-0.03% C; 0-2% Mn; 0-1% Si and the balance Fe; e) 12-14% Cr; 0.15-0.4% C; 0-1% Mn; 0-1% Si and the balance Fe; f) 16-18% Cr; 0-0.05% C; 0-1% Mn; 0-1% Si and the balance Fe; g) 3-12% aluminum, 2-8% vanadium, 0.1-0.75% iron, 0.1-0.5% oxygen, and the remainder titanium; or h) about 6% aluminum, about 4% vanadium, about 0.25% iron, about 0.2% oxygen, and the remainder titanium.

Problems solved by technology

Shortcomings of the known methods of producing projectiles for ammunition include the limitation of materials that can be used to form projectiles and the lengthy time for manufacturing.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Metal injection molded projectile
  • Metal injection molded projectile
  • Metal injection molded projectile

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0037]While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.

[0038]As used herein the term “shell,”“bullet” and “projectile” are used interchangeably and denote a projectile that is positioned in an ammunition cartridge until it is expelled from a gun, rifle, or the like and propelled by detonation of a powdered chemical propellant or other propellant that may be non-powdered, solid, gaseous or gelatin. And includes payload-carrying projectiles contains shot, an explosive or other filling, though modern usage sometimes includes large solid projectiles properly termed shot (AP, APCR, APCNR, APDS, APFSDS and proof shot).

[003...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
thicknessaaaaaaaaaa
thicknessaaaaaaaaaa
thicknessaaaaaaaaaa
Login to view more

Abstract

The present invention provides a molded metal ammunition projectile comprising: a metal composition injected into a molded to form a projectile comprising a nose extending essentially symmetrically to a shoulder; an essentially cylindrical bearing surface extending from the shoulder to a base.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]None.TECHNICAL FIELD OF THE INVENTION[0002]The present invention relates in general to the field of ammunition, specifically to compositions of matter and methods of making metal projectiles by metal injection molding.STATEMENT OF FEDERALLY FUNDED RESEARCH[0003]None.INCORPORATION-BY-REFERENCE OF MATERIALS FILED ON COMPACT DISC[0004]None.BACKGROUND OF THE INVENTION[0005]Without limiting the scope of the invention, its background is described in connection with projectiles made by injection molding for use in ammunition. Conventional ammunition projectiles for rifles and machine guns, as well as larger caliber weapons, are made from brass or lead that are machined, cast, molded or coated.[0006]For example, U.S. Patent Application Publication No. 2003 / 0101891 entitled, “Jacketed bullet and methods of making the same” discloses a jacketed firearms projectile having a jacket thickness less than approximately 0.025 inches thick are described, w...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): F42B12/02
CPCF42B12/02F42B5/025F42B10/22F42B12/74F42B33/00
Inventor BURROW, LONNIE
Owner TRUE VELOCITY IP HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products