Variable Temperature Blender

a blender and variable temperature technology, applied in water-boiling vessels, kitchen equipment, domestic applications, etc., can solve the problems of difficult to determine the best setting and precise function of controlling the blender, and the blender itself is not ideal for preparing hot or heated ingredients

Pending Publication Date: 2021-01-28
COLUMBIA INSURANCE CO
View PDF3 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0002]Food processing products are used commonly used to reduce the preparation time in the preparations of ingredients for meals. These processing products may also have stand-alone usage in the preparation of drinks and other specific dishes where the food products must be prepared at a certain consistency. Along with food processors, blenders are a common product used to prepare ingredients and drinks in this manner. Common blenders usually include a lid, food containment vessel, blade, motor, and base. An accessible user interface allows for cooks and consumers to adjust and operate these blenders. Many blenders have a rounded or square base structure allowing the blender to rest steadily on a counter-top or other flat surface. Blenders are common food processing tools and there are many currently on the market which offer various vessel sizes, different blade configurations, and utilize different component materials to best meet customer needs. These needs include whether the blender will be used for commercial or domestic cooking purposes and the types of food preparation that is to occur in their containment vessels. Traditionally, blenders for food preparation utilize a sharp “X” style blade designed for food cutting and chopping whereas blenders used in drink preparation utilize a duller “wing” style blade suitable for ice crushing.
[0004]Blenders are commonly used to prepare room temperature or cold ingredients. Blenders themselves are not ideal to prepare hot or heated ingredients as the shape and size of the containments vessels are not ideal to provide ample and appropriate cooking heat to the food product. To improve upon existing blender technologies, the inventors have envisioned a blender capable of overcoming and improving upon some of these short comings. The blender envisioned by the inventors has the capability of operating at variable temperatures to properly and correctly complete food preparation at either a cold or hot blending process. Depending on variable factors such as altitude, ingredient consistency, and desired volumes, it is difficult to determine the best setting and precise functionality to control the blender. By including a heating element into a blender, the heating element not only allows for the preparation of heated food but also allows the user to cook with greater precision and ease, reduces time required for cooking calculations and the opportunity for human error, and eliminates the need for first heating the food products via another appliance and transitioning the food products into the blender.
[0005]As such, the inventors propose the following disclosure pertaining to a variable temperature blender capable of operating at pre-programmed settings or custom settings defined by the user at the time of operation. The inventor's device also allows for a greater magnitude of possible cooking operations both in the area of cold food preparation and hot food preparation. The envisioned blender also allows for instruction to the user and prompts to add ingredients allowing for increased flexibility in cooking complex food preparation items and techniques.

Problems solved by technology

Blenders themselves are not ideal to prepare hot or heated ingredients as the shape and size of the containments vessels are not ideal to provide ample and appropriate cooking heat to the food product.
Depending on variable factors such as altitude, ingredient consistency, and desired volumes, it is difficult to determine the best setting and precise functionality to control the blender.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Variable Temperature Blender
  • Variable Temperature Blender
  • Variable Temperature Blender

Examples

Experimental program
Comparison scheme
Effect test

embodiment 200

[0028]FIG. 2 shows an embodiment 200 of the lid assembly (105) of the variable temperature blender (100). The lid assembly 200 may include a lid 205 having an outer lid circumferential portion 210 and an inner raised lid portion 215. The outer lid circumferential 210 portion may extend to a greater diameter than the vessel assembly (110) upon which the lid assembly 200 can rest and attach. A plurality of lid notches 220 may be positioned on the edges of the outer lid circumferential portion 210. The plurality of lid notches 220 in an embodiment of the disclosure may have an L shaped design and positioned approximated 180 degrees from one another. The lid assembly 200 disclosed in FIG. 2 has two lid notches 220, however other variations and numbers of notches may also be used. When the lid assembly 200 is placed on top of the vessel assembly (110), the lid assembly 200 may be rotated to lock the plurality of lid notches 220 with the vessel assembly (110).

[0029]The inner raised lid po...

embodiment 300

[0032]Turning now to FIG. 3, a perspective view of an embodiment 300 of the vessel assembly (110) of the variable temperature blender (100) is shown. The vessel assembly 300 may include a blending vessel 305 having a hollow interior volume 310. The blending vessel 305 provides a space to house food ingredients and liquids for mixture during operation of the variable temperature blender 100. The blending vessel 305 may be made of a glass material, although it should be understood that other materials may be sufficient, such as but not limited to, stainless steel or plastic polymers. The blending vessel 305 may contain grooves 315 on the interior walls to aid in the blending process by preventing excess food particle build up on the interior walls as the variable temperature blender 100 is in operation. A top rim 320 of the blending vessel 305 can be configured to mate with the shape of the lid assembly 200 disclosed above and described / shown in earlier figures. In some embodiments, t...

embodiment 400

[0035]Turning now to FIG. 4, a bottom perspective view of an embodiment 400 of a bottom of the vessel assembly (300) is shown, with the vessel electrical interface 405 being visible. In an embodiment of the disclosure, the vessel electrical interface 405 is a male pin configuration that can mate with the base assembly (115). The vessel electrical interface 405 is in communication with the lid switch (338), a heating element, and a temperature sensor 408 of the vessel assembly (300). The vessel electrical interface 405 passes power and data signals through these connections to allow for correct operation of the variable temperature blender (100) at the selected mode of operation and also adjusts the temperature of the heating element based on the selected mode of operation.

[0036]A plate 410 of the vessel assembly (300) is also shown. The plate 410 is made of any type of thermally conductive material and provides a barrier between the interior of the blending vessel and the interior o...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A variable temperature blender is disclosed for the cooking and preparation of heated sauces, jams, soups, purees, alternative milks, smoothies and more. A variable temperature blender has a lid assembly, a vessel assembly, and a base assembly. The vessel assembly has a blending vessel and a collar attached to a bottom portion of the blending vessel. The base assembly have a user interface, a motor, and a controller. A heating element positioned within the collar of the vessel assembly received an electronic signal from the controller via an electrical interface connecting the base assembly with the vessel assembly. The electronic signal activates or deactivates the heating element based on an operational mode of the variable temperature blender to heat a food item contained within the blending vessel.

Description

CROSS-REFERENCE AND PRIORITY CLAIM TO RELATED PATENT APPLICATIONS[0001]This non-provisional patent application claims priority to U.S. provisional patent application 62 / 878,571, filed Jul. 25, 2019, and entitled “Variable Temperature Blender”, the entire disclosure of which is incorporated herein by reference.INTRODUCTION[0002]Food processing products are used commonly used to reduce the preparation time in the preparations of ingredients for meals. These processing products may also have stand-alone usage in the preparation of drinks and other specific dishes where the food products must be prepared at a certain consistency. Along with food processors, blenders are a common product used to prepare ingredients and drinks in this manner. Common blenders usually include a lid, food containment vessel, blade, motor, and base. An accessible user interface allows for cooks and consumers to adjust and operate these blenders. Many blenders have a rounded or square base structure allowing t...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A47J43/046A47J43/07A47J27/00A47J27/21
CPCA47J43/046A47J43/0716A47J27/21091A47J43/075A47J27/004A47J36/32A23L5/10A23L5/15A23L21/10A47J36/321A23V2002/00B02C25/00
Inventor ATINAJA, BRIAN
Owner COLUMBIA INSURANCE CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products