Proximal Tab for Side-Delivered Transcatheter Heart Valve Prosthesis

a transcatheter heart valve and prosthesis technology, applied in the field of prosthesis, can solve the problems of prone to fracture of the strut of the valve, inability to fully correct the valve problem, etc., to achieve the effect of convenient rolling, folding, and compressing

Inactive Publication Date: 2021-09-23
VDYNE INC
View PDF0 Cites 13 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013]The present invention is directed to a transcatheter heart valve replacement (A61F2 / 2412), having a proximal sub-annular anchoring tab and a distal sub-annular anchoring tab, and in particular an orthogonally (length-wise) delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling, folding, compressing in height and.or width, the valve length-wise, or orthogonal, to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed from the inferior vena cava directly into the tricuspid valve, e.g. has a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
[0023]In another preferred embodiment of the invention, there is provided a valve wherein the annular support frame is comprised of a plurality of compressible wire cells having a orientation and cell geometry substantially orthogonal to the central vertical axis to minimize wire cell strain when the annular support frame is configured in a vertical compressed configuration, a rolled compressed configuration, or a folded compressed configuration.
[0059]In another preferred embodiment of the invention, there is provided a method for improving hemodynamic flow during implantation of a transcatheter prosthetic heart valve, comprising: advancing a delivery catheter to the desired location in the body and delivering the valve of claim 1 to the desired location in the body; partially releasing the valve from the delivery catheter to establish blood flow around the partially released valve and establish blood flow through the flow control component; completely releasing the valve from the delivery catheter while maintaining attachment to the valve with a positioning catheter or wire to transition to increased blood flow through the flow control component and decreasing blood flow around the valve; and deploying the valve into a final mounted position to transition to complete blood flow through the flow control component and minimal or no blood flow around the valve, and disconnecting and withdrawing the positioning catheter or wire from the valve.
[0060]In another preferred embodiment of the invention, there is provided a method for improving flow, wherein the distal anchoring tab is an RVOT tab positioned in the RVOT during the transition from partial release of the valve to complete release of the valve.

Problems solved by technology

For this reason it did not fully correct the valve problem, only alleviate the symptoms.
However, the struts of these valves tended to fracture from fatigue over time.
However, a downside of this design is that it allows some regurgitation.
Additionally, a problem with stent-style replacement valves is that they often continue to have the regurgitation or leakage problems of prior generations of valves, as well as require expensive materials engineering in order to cope with the 100's of millions of cycles encountered during just a few years of normal heart function.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Proximal Tab for Side-Delivered Transcatheter Heart Valve Prosthesis
  • Proximal Tab for Side-Delivered Transcatheter Heart Valve Prosthesis
  • Proximal Tab for Side-Delivered Transcatheter Heart Valve Prosthesis

Examples

Experimental program
Comparison scheme
Effect test

example

Compression Methods

[0190]In another preferred embodiment, there is provided a method of compressing, wherein the implantable prosthetic heart valve is rolled or folded into a compressed configuration using a step selected from the group consisting of:

[0191](i) unilaterally rolling into a compressed configuration from one side of the annular support frame;

[0192](ii) bilaterally rolling into a compressed configuration from two opposing sides of the annular support frame;

[0193](iii) flattening the annular support frame into two parallel panels that are substantially parallel to the long-axis, and then rolling the flattened annular support frame into a compressed configuration; and

[0194](iv) flattening the annular support frame along a vertical axis to reduce a vertical dimension of the valve from top to bottom.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to a transcatheter heart valve replacement (A61F2 / 2412), and in particular Compression Capable Annular Frames for a side delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]Provided by Application Data Sheet per USPTO rules.STATEMENT REGARDING FEDERALLY SPONSORED R&D[0002]Provided by Application Data Sheet per with USPTO rules.NAMES OF PARTIES TO JOINT RESEARCH AGREEMENT[0003]Provided by Application Data Sheet per with USPTO rules.REFERENCE TO SEQUENCE LISTING[0004]Provided by Application Data Sheet per USPTO rules.STATEMENT RE PRIOR DISCLOSURES[0005]Provided by Application Data Sheet per USPTO rules.BACKGROUND OF THE INVENTIONField of the Invention[0006]The invention relates to a transcatheter heart valve replacement (A61F2 / 2412).Description of the Related Art[0007]In 1952 surgeons implanted the first mechanical heart valve, a ball valve that could only be placed in the descending aorta instead of the heart itself. For this reason it did not fully correct the valve problem, only alleviate the symptoms. However it was a significant achievement because it proved that synthetic materials could be used to creat...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61F2/24
CPCA61F2/2418A61F2/2436A61F2002/068A61F2210/0014A61F2/2433A61F2220/0008A61F2250/0039A61F2/2439A61F2/2442A61F2220/0016
Inventor VIDLUND, ROBERTCHRISTIANSON, MARKSAIKRISHNAN, NEELAKANTAN
Owner VDYNE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products