Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Leaf compactor and baler

a technology of leaf baler and compactor, which is applied in the direction of bundling articles, vehicle cleaning apparatus, hops/wine cultivation, etc., can solve the problems of burdensome chores, inability of many older individuals or individuals with compromised health, and inability of machines to pick leaves, etc., to achieve convenient lifting and carrying, and avoid raking

Inactive Publication Date: 2009-06-23
TRUITT BOBBY L
View PDF25 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0010]A first advantage of the present invention is that it crushes leaves, sticks, pine straw, pinecones and related debris on lawns, yards, and fields. Yet another advantage of the present invention is that it has unlimited capacity because it continuously bales and eliminates leaves. In such context, the present invention produces bales that can be conveniently lifted and carried.
[0011]Still another advantage of the present invention is that it automatically gathers leaves thereby avoiding raking. Further, another advantage of the present invention is that it is hydraulically driven. Still further, another advantage of the present invention is that it does not have augers which require a housing.
[0012]Another advantage of the present invention is that it is removably attachable to a prime mover. Finally, another advantage of the present invention is that can be used without the compactor and baler to produce mulch.
[0013]In one exemplary embodiment, there may be provided a gathering and baling apparatus capable of crushing sticks and similar material associated with the leaves. The apparatus is reversibly attached to a prime mover that can move the apparatus across lawns and fields as needed. In a first embodiment of the present invention, the front portion of the apparatus may have brushes extending diagonally at an angle to the centerline of the apparatus. The brushes roll inwardly on their bottom edges to gather leaves towards the front of the apparatus. The roller brushes direct and lift the leaves to a crusher. The crusher has one or more pairs of crushing rollers. Each crushing roller in a pair has crushing vanes and the crushing vane of one crushing roller inter-digitate or meshes with the crushing vane of the other crushing roller. The crushing rollers are driven by a motor to rotate towards one another so that the leaves and sticks and related debris from the brushes will be fed into the crushing roller pair and be crushed by the crushing vanes as the crushing rollers rotate. Crushed material can pass through one or more additional pairs of like crushing rollers, but will eventually fall and be pushed to the bottom of the crusher where it will be forced out of the crusher by a similar pair of crushing rollers with crushing vanes and be deposited onto a conveyor mechanism. The conveyor mechanism moves the crushed debris to a baler assembly. The baler assembly has two compacting rollers contained within a continuous band. One of the baler assembly compacting rollers is fixed and the other compacting roller is movable. When the movable compacting roller is moved away from the fixed compacting roller, the band can receive the crushed debris from the conveyor mechanism. Once the crushed debris is deposited on the band, the adjustable compacting roller is moved toward the fixed compacting roller, thereby compressing the debris further. The compacting rollers are rotated in the same direction by motors, causing the crushed compressed debris to rotate within the band. As the crushed debris rotates within the band, baling material such as paper is inserted between the compacting rollers and is directed by the moving band around the rotating debris. The paper tightly encircles the rotating debris, thus baling it. The movable roller within the compactor is moved away from the fixed roller, the baler assembly is rotated, and the baled debris is expelled. This sequence of gathering, crushing, conveying, compacting, and baling debris is produced continuously and automatically as the apparatus moves forward gathering leaves.
[0014]In a second exemplary embodiment of the present invention, the front portion of the apparatus may be brushes extending diagonally at an angle to the centerline of the apparatus. The brushes roll inwardly on their bottom edges to gather leaves towards the front of the apparatus. The roller brushes direct and lift the leaves to a conveyor mechanism. The conveyor mechanism moves the crushed debris to a crusher. The crusher has one or more pairs of crushing rollers. Each crushing roller in a pair has crushing vanes and the crushing vane of one crushing roller inter-digitate or meshes with the crushing vane of the other crushing roller. The crushing rollers are driven by a motor to rotate towards one another so that the leaves and sticks and related debris from the brushes will be fed into the crushing roller pair and be crushed by the crushing vanes as the crushing rollers rotate. Crushed material can pass through one or more additional pairs of like crushing rollers, but will eventually fall and be pushed to the bottom of the crusher where it will be forced out of the crusher by a similar pair of crushing rollers with crushing vanes and be deposited into a baler assembly. The baler assembly has two compacting rollers contained within a continuous band. One of the baler assembly compacting rollers is fixed and the other compacting roller is movable. When the movable compacting roller is moved away from the fixed compacting roller, the band can receive the crushed debris from the conveyor mechanism. Once the crushed debris is deposited on the band, the adjustable compacting roller is moved toward the fixed compacting roller, thereby compressing the debris further. The compacting rollers are rotated in the same direction by motors, causing the crushed compressed debris to rotate within the band. As the crushed debris rotates within the band, baling material, such as paper is inserted between the compacting rollers and is directed by the moving band around the rotating debris. The paper tightly encircles the rotating debris, thus baling it. The movable roller within the compactor is moved away from the fixed roller, the baler assembly is rotated, and the baled debris is expelled. This sequence of gathering, conveying, crushing, compacting, and baling debris is produced continuously and automatically as the apparatus moves forward gathering leaves.
[0015]In a third exemplary embodiment of the present invention, the apparatus is attached to a prime mover, such as a lawn mower base. Unlike the other alternative embodiments, the present embodiment lacks brushes extending diagonally at an angle to the centerline of the apparatus for the collection of debris. In the present embodiment, debris is manually introduced by the operator into the crusher. The crusher has one or more pairs of crushing rollers. Each crushing roller in a pair has crushing vanes and the crushing vane of one crushing roller interdigitate or meshes with the crushing vane of the other crushing roller. The crushing rollers are driven by a motor to rotate towards one another so that the leaves and sticks and related debris from the brushes will be fed into the crushing roller pair and be crushed by the crushing vanes as the crushing rollers rotate. Crushed material can pass through one or more additional pairs of like crushing rollers, but will eventually fall and be pushed to the bottom of the crusher where it will be forced out of the crusher by a similar pair of crushing rollers with crushing vanes and be deposited into a baler assembly. The baler assembly has two compacting rollers contained within a continuous band. One of the baler assembly compacting rollers is fixed and the other compacting roller is movable. When the movable compacting roller is moved away from the fixed compacting roller, the band can receive the crushed debris from the conveyor mechanism. Once the crushed debris is deposited on the band, the adjustable compacting roller is moved toward the fixed compacting roller, thereby compressing the debris further. The compacting rollers are rotated in the same direction by motors, causing the crushed compressed debris to rotate within the band. As the crushed debris rotates within the band, baling material, such as paper is inserted between the compacting rollers and is directed by the moving band around the rotating debris. The paper tightly encircles the rotating debris, thus baling it. The movable roller within the compactor is moved away from the fixed roller, the baler assembly is rotated, and the baled debris is expelled. The crushing, compacting, and baling sequence is guided by the user during the operation of the apparatus. The present embodiment is significantly smaller in size than the alternative embodiments and while motor driven is primarily manual in its continuous operation.

Problems solved by technology

A common method of gathering and disposing of leaves by homeowners is to rake the leaves and to place them into trash bags, which is a burdensome chore.
Raking leaves, picking them up, and placing them in bags is stressful work and is often beyond the ability of many older individuals or individuals with compromised health.
During transport and unloading, the machine is not available to pickup leaves, which limits the rate at which leaves can be picked up and removed throughout the day.
These mowing machines have limited capacity to pickup leaves.
They are slow and frequently plug with leaves.
The major drawbacks of these bagging machine systems are the cost of the bags and the fact that the systems can be relatively labor intensive.
The drawbacks of devices such as these are that sticks and similar debris amongst the leaves can cause the gathering mechanism or the shredder to jam.
Sticks and the like can also jam between the auger and its housing.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Leaf compactor and baler
  • Leaf compactor and baler
  • Leaf compactor and baler

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0037]Reference will now be made in detail to presently preferred embodiments of the invention, examples of which are fully represented in the accompanying drawings. Such examples are provided by way of an explanation of the invention, not limitation thereof. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention, without departing from the spirit and scope thereof. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Still further, variations in selection of materials and / or characteristics may be practiced, to satisfy particular desired user criteria. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the present features and their equivalents.

[0038]FIG. 1 depicts a side view of the leaf / debris collecting, crushing, and compacting and baling appar...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An apparatus 10 for compacting and baling leaves, grass clippings, sticks, pine straw and other debris on lawns, yards, or fields is provided. The apparatus 10 may have diagonal brushes 26 to gather debris for processing though a crusher 28, a conveyor belt 30 to transport the crushed debris, and a baler 32 to compact and bale the debris. The baler 32 may compact the debris by rotating the debris in a continuous band 52, into which baling material 72 may be inserted to bale the debris. Alternatively, the debris may be gathered and feed into a crusher 28 that deposits the crushed debris directly into the baler 32 for compacting and baling. Further still, the apparatus 10 may gather the debris with brushes 26 and feed it onto a conveyor mechanism 30 that then introduces it into a crusher 28. The crushed debris may then be feed into a baling mechanism 32 that compacts and bales the debris for easy removal and disposal. In its various embodiments, the present invention may be connected to a prime mover 20 or alternatively connected to a portable base with a motor for driving the device 10.

Description

REFERENCE TO RELATED APPLICATIONS[0001]This application is a Continuation-in-Part of and claims priority to Non-Provisional Patent Application, U.S. Ser. No., 09 / 971,402, entitled “Leaf Compactor and Baler” filed Oct. 5, 2001, now abandoned, which is fully incorporated herein by reference.BACKGROUND OF INVENTION[0002]1. Field of Invention[0003]This invention relates to leaf gathering machines and to leaf balers and, more particularly, to an apparatus that will gather, crush, compress, and bale leaves and other debris.[0004]2. Technical Background[0005]The gathering and disposal of leaves is an essential activity to maintain the cleanliness and appearance of a variety of public lands, golf courses, and homes, including lawns and natural areas. Leaf gathering and disposal usually occurs in the fall in the northern hemisphere but can occur at other times of the year if plant-like material accumulates, such as pine cones, pine needles, tall grasses, shrubbery, weeds, and the like. Leave...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): B65B13/20B02C19/00A01F15/07A01F15/08A01G1/12
CPCA01F15/07A01F15/085A01F2015/078A01F2015/0795A01G20/43
Inventor TRUITT, BOBBY L.
Owner TRUITT BOBBY L
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products