A preparation method of carbon nanotube composite bismuth molybdate green deep water treatment agent
A technology of compounding bismuth molybdate and carbon nanotubes is applied in the fields of adsorption water/sewage treatment, oxidized water/sewage treatment, chemical instruments and methods, etc.  Inexpensive, strong adsorption effect
- Summary
- Abstract
- Description
- Claims
- Application Information
 AI Technical Summary 
Problems solved by technology
Method used
Examples
Embodiment 1
[0029] (1) 10g of carbon nanotubes in 4L of H with a volume ratio of 1:1 2 SO 4 and HNO 3 The mixture was ultrasonically reacted at room temperature for 30 minutes, washed with water until neutral, and vacuum-dried at room temperature for 48 hours to obtain 5 g of carboxylated carbon nanotubes; then the above 5 g of carboxylated carbon nanotubes were dispersed in excess diethylenetriamine, and 100 mg of 2-( 7-azobenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate, reacted at 40°C for 5h, washed with ethanol, and dried in vacuum at room temperature for 48h to obtain 4g of aminated carbon nano tube; finally ultrasonically disperse 4g of aminated carbon nanotubes in 1L of a mixture of water and acetone with a volume ratio of 3:1, adjust the pH value to 5 with sodium carbonate solution, add 4g of 2,4,6- Trifluoro-5-chloropyrimidine, adjusted the pH value to 6 with sodium carbonate solution, ultrasonically reacted at 20°C for 24h, washed with ethanol, washed with wate...
Embodiment 2
[0033] (1) 10g of carbon nanotubes in 4L of H with a volume ratio of 3:1 2 SO 4 and HNO 3 Ultrasonic reaction at room temperature in the mixed solution for 45 minutes, washed with water until neutral, and vacuum-dried at room temperature for 54 hours to obtain 6.5 g of carboxylated carbon nanotubes; then disperse the above 5 g of carboxylated carbon nanotubes into excess diethylenetriamine, add 300 mg of 2- (7-Azobenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate, reacted at 45°C for 5h, washed with ethanol, and dried in vacuum at room temperature for 48h to obtain 4.2g of aminated Carbon nanotubes; finally, ultrasonically disperse 4.2g of aminated carbon nanotubes in 1L of a mixture of water and acetone at a volume ratio of 4:1, adjust the pH value to 5.5 with sodium carbonate solution, and add 5g of 2,4 dropwise in an ice-water bath , 6-trifluoro-5-chloropyrimidine, adjust the pH value to 6.2 with sodium carbonate solution, ultrasonically react at 25°C for 36h...
Embodiment 3
[0037] (1) 10g of carbon nanotubes in 4L of H with a volume ratio of 5:1 2 SO 4 and HNO 3 The mixture was ultrasonically reacted at room temperature for 60 minutes, washed with water to neutrality, and vacuum-dried at room temperature for 60 hours to obtain 8 g of carboxylated carbon nanotubes; then the above 8 g of carboxylated carbon nanotubes were dispersed in excess diethylenetriamine, and 600 mg of 2-( 7-azobenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate, reacted at 50°C for 5h, washed with ethanol, and dried in vacuum at room temperature for 48h to obtain 4.5g of carbon amides nanotubes; finally ultrasonically disperse 4.5g of aminated carbon nanotubes in 1L of a mixture of water and acetone at a volume ratio of 5:1, adjust the pH value to 6 with sodium carbonate solution, add 6g of 2,4, 6-trifluoro-5-chloropyrimidine, adjust the pH value to 6.5 with sodium carbonate solution, ultrasonically react at 30°C for 48h, wash with ethanol, wash with water, dry...
PUM
 Login to View More
 Login to View More Abstract
Description
Claims
Application Information
 Login to View More
 Login to View More - R&D
- Intellectual Property
- Life Sciences
- Materials
- Tech Scout
- Unparalleled Data Quality
- Higher Quality Content
- 60% Fewer Hallucinations
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2025 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com