Novel polymerase compositions and uses thereof
a polymerase and composition technology, applied in the field of molecular biology, can solve the problems of pcr reaction error rate of 1.610sup>6 /sup>mutations per nucleotide per cycle, inability of taq dna polymerase to correct nucleotide misincorporation made during, and inability of taq to extend from a newly polymerized strand to a template,
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Primer Extension with Taq or Pfu DNA Polymerase In Separate Reactions
[0036] These experiments demonstrate the relative ability of Taq or Pfu DNA polymerase to PCR amplify hybridoma and PBL templates under various conditions. Taq DNA polymerase resulted in either the presence of a PCR product or an increase in the amount of PCR product when compared to Pfu DNA polymerase when amplifying hybridoma and PBL templates. In addition, the dNTP and not the MgCl2 concentration affected the amount of LC product generated.
Taq and Pfu DNA Polymerases with CG7C7 Hybridoma Template
[0037] Taq and Pfu DNA polymerases were compared for their ability to amplify the LC, CH1, and Fd regions of a mouse anti-human fibronectin antibody (CG7C7, ATCC HB-126). Total RNA was isolated from CG7C7 hybridoma cells using an RNA isolation kit (Stratagene). Five μg of total RNA was converted to cDNA in a first strand synthesis reaction using an oligo-dT primer for the light chain and AB-41 for the heavy chain (T...
example 2
Primer Extension Reactions with 3′ Mismatched Primers
[0046] These experiments investigated the ability of Taq and Pfu DNA polymerases both together and in separate reactions to extend from primers which contain one or two 3′ mismatches. The first experiment demonstrates that Taq DNA polymerase can only extend from a primer which matches at the 3′ end under the conditions used (2.1 and 6.1 mM MgCl2). The next experiment demonstrates that Taq and Pfu DNA polymerases used in the same reaction will extend from all the primers with 3′ mismatches that were used from both hybridoma and PBL templates while neither polymerase alone was able to extend from all primers. The combination of both polymerases also resulted in more product in some of the samples.
[0047] This series of experiments suggest that Taq in Taq buffer will extend from a primer that is perfectly matched at the 3′ end, in V25 buffer will extend from a primer that has one T which creates a mismatch at the 3′ end of a primer...
example 3
Effect of Different Ratios of Taq and Pfu DNA Polymerases on Extension from 3′ Mismatched Primers
[0063] This experiment investigated different ratios of Taq and Pfu DNA polymerases and template concentrations when amplifying from perfectly matched and 3′ mismatched primers. Plasmid DNA which encoded an anti-tetanus toxoid immunoglobulin fragment (kappa light chain and Fd portion of the heavy chain) was used as the template (Mullinax et al. 1990, supra). Although optimal polymerase ratios and template concentrations were not identified in these experiments, additional experimentation would need to be done before concluding that they did not have an effect.
Effect of Pfu DNA Polymerase Ratio on Extension from 3′ Mismatched Primers
[0064] Five different ratios of Taq and Pfu DNA polymerases were used in PCR reactions with a combined total of 2.5 units per reaction. The ratios were 9:1, 7:3, 5:5, 3:7, and 1:9 of Taq:Pfu. The Fd primers were AB-61, AB-715, and AB-717 in V25 buffer. An...
PUM
Property | Measurement | Unit |
---|---|---|
temperature | aaaaa | aaaaa |
temperature | aaaaa | aaaaa |
temperature | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com