Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Subarachnoid epidural shunt

a subarachnoid and epidural technology, applied in the direction of wound drains, intravenous devices, etc., can solve the problems of irritation and hiccups, difficulty in breathing, and serious medical conditions, and achieve the effect of facilitating bone in-growth

Inactive Publication Date: 2006-10-05
CODMAN & SHURTLEFF INC
View PDF11 Cites 13 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0010] In another embodiment, the housing can include a central portion that is adapted to be disposed within a lumen, and opposed first and second ends that are adapted to be positioned adjacent to opposed ends of the lumen to anchor the central portion within the lumen. The fluid inlet port can be formed in the first end of the housing and the fluid outlet port can be formed in the second end of the housing. The central portion can have a variety of configurations, but in one exemplary embodiment it can have a substantially cylindrical shape that is configured to be disposed within a substantially cylindrical lumen. The flow control component can be disposed within an inner lumen or bore formed in the central portion, or the bore can form the flow control component and it can have a diameter that is effective to control fluid flow therethrough. The first and second ends of the housing can also have a variety of configurations, but in one embodiment the first and second ends of the housing can be expandable.

Problems solved by technology

In a patient suffering from hydrocephalus, the cerebrospinal fluid is not absorbed in this manner, but instead accumulates in the ventricles of the patient's brain and can lead to serious medical conditions.
With NPH it is believed that the ventricles enlarge to handle the increased volume of the CSF, and the compression of the brain from within by the fluid-filled ventricles destroys or damages brain tissue causing some of the symptoms.
Vascular shunts functioned very well, but they were prone to multiple problems including early and late infection, as well as rare, potentially fatal heart failure due to blockage of blood vessels within the lungs by particles of blood clot flaking off the shunt's catheter tip.
Occasionally, this cavity cannot resorb the CSF rapidly and the lung becomes compressed by the excess CSF resulting in difficulty in breathing.
Rarely, the catheter can rest on the diaphragm (the muscle at the base of the lungs used for breathing), causing irritation and hiccups.
While shunts were a major medical breakthrough, there are problems that still remain unsolved in the treatment of hydrocephalus, including shunt obstruction, infection, and overdrainage.
These same problems also exist with other conditions which are treated by CSF diversion, such as pseudotumor cerebri.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Subarachnoid epidural shunt
  • Subarachnoid epidural shunt
  • Subarachnoid epidural shunt

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0038] Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.

[0039] The present invention provides methods and devices for shunting fluid to treat hydrocephalous, and in particular NPH, or Alzheimer's, Idiopathic Intracranial Hypertension (IIH), or ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Methods and devices are provided for shunting fluid to treat hydrocephalous, and in particular for treating normal pressure hydrocephalous, or Alzheimer's, Idiopathic Intracranial Hypertension (IIH), or any other condition in which it is necessary to drain and / or cleanse CSF. The methods and devices utilize a shunt having an inlet port, and outlet port, and a flow control component for controlling fluid flow from the inlet port to the outlet port. The shunt can be implanted at a location along or within a patient's spinal column. In one exemplary embodiment, an inlet port of a shunt can be implanted within the subarachnoid space, and an outlet port of a shunt can be implanted at a drainage site. In certain exemplary embodiments, the cerebrospinal fluid is drained into the epidural space.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] The present invention claims priority to U.S. Provisional Application No. 60 / 668,111, filed on Apr. 5, 2005 and entitled “Subarachnoid-Epidural Shunt,” and U.S. Provisional Application No. 60 / 703,470, filed on Jul. 29, 2005 and entitled “Subarachnoid-Epidural Shunt and Improved CSF Diversion Devices and Methods,” which are hereby incorporated by reference in their entireties.FIELD OF THE INVENTION [0002] The present invention relates to methods and devices for shunting cerebrospinal fluid. BACKGROUND OF THE INVENTION [0003] Many conditions benefit from shunting, removal, or cleansing of CSF, including hydrocephalus, pseudotumor cerebri (Idiopathic Intracranial Hypertension, IIH), and Alzheimer's disease. Hydrocephalus, for example, is a condition afflicting patients who are unable to regulate cerebrospinal fluid flow through their body's own natural pathways. Produced by the ventricular system, cerebrospinal fluid (CSF) is normally abso...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61M5/00A61F2/04
CPCA61M27/006
Inventor GLENN, BRADLEY J.
Owner CODMAN & SHURTLEFF INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products