Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Bolt fastening method and apparatus

Inactive Publication Date: 2009-04-02
MAZDA MOTOR CORP
View PDF7 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004]The present invention has been devised in view of the above-described matters, and an object of the present invention is to provide a bolt fastening method which can properly restrain the variation in the fastening shaft force even if the snug torque is set at a relatively high torque in the torque+angle method. Another object of the present invention is to provide a bolt fastening apparatus which uses the above-described bolt fastening method.
[0006]According to the present invention, the specified angle for the bolt to be further fastened from the bolt angle corresponding to the snug torque is properly corrected (updated), so that the final fastening shaft force of the bolt can be made uniform. Thereby, the variation in the fastening shaft force can be restrained properly even if the snug torque is set at the relatively high torque.
[0007]According to an embodiment of the first aspect of the present invention, one of a plurality bolts to be fastened is selected as a standard bolt, and the obtained fastening angle of the standard bolt at the point where the fastening torque of the bolt has reached the snug torque from the fastening-angle start standard point is used as the standard angle of the snug torque. Thereby, the fastening shaft force of the other bolt than the standard bolt can be made approximate the fastening shaft force of the standard bolt easily, and the fastening shaft forces of all of the bolts can be made uniform.
[0008]According to another embodiment of the first aspect of the present invention, the obtaining of the fastening angle of the bolt at the point where the fastening torque of the bolt has reached the snug torque from the fastening-angle start standard point is conducted for a plurality bolts to be fastened, an average angle of the obtained fastening angles of the plurality of bolts is obtained, and the average angle is used as the standard angle of the snug torque. Thereby, the correction of the fastening shaft force of the bolts can be properly achieved regardless of presence of the plural bolts to be fastened, so that the fastening shaft forces of the plural bolts can be made uniform.
[0009]According to another embodiment of the first aspect of the present invention, the plurality of bolts for obtaining the average angle are part of bolts which are selected from all of the bolts to be fastened. Thereby, even if there are many bolts, the average angle are easily obtained, and the correction is made based on the average angle, thereby making the fastening shaft forces of the plural bolts uniform. Further, the fastening angle of the specified bolt which is largely different from the one of the other bolt(s) may be excluded from averaging, so that more appropriate average angle can be used to provide the proper fastening, considering the situation of an object product to be fastened with the bolts.
[0010]According to another embodiment of the first aspect of the present invention, the selected plural bolts are fastened substantially at the same time, respective fastening angles of the bolts at the points where the fastening torques of the bolts have reached the snug torques from the fastening-angle start standard points are obtained, and the average angle is obtained from the respective fastening angles obtained. Thereby, the fastening shaft forces of the plural bolts can be made uniform, achieving the efficient fastening step of the bolts

Problems solved by technology

In the above-described bolt fastening method (torque+angle method), however, there may occur the variation in the fastening shaft force according to the coefficient of friction (between the screw face and the seat face) in the fastening area before reaching the snug torque Ts, which may improperly affect the fastening shaft force F of the fastening after the fastening point of the snug torque Ts (see FIG. 12).
In this case, while it may be considered to set the snug torque Ts at a very low torque for the purpose of restraining the variation of the fastening shaft force (fastening angle) at the snug torque Ts, there occurs necessity to cope with restrictions of fastening conditions (for example, there is a problem in that it may be recognized by mistake to have reached the snug torque due to dusts being stuck or the like).
Thereby, the above-described setting would not be sufficient.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Bolt fastening method and apparatus
  • Bolt fastening method and apparatus
  • Bolt fastening method and apparatus

Examples

Experimental program
Comparison scheme
Effect test

embodiment 1

[0032]77A bolt fastening method according to a first embodiment will be described

[0033][1] In a bolt fastening method according to the first embodiment, the bolt is fastened to a fastened member (engine bearing parts, for example) with a bolt rotating device such as a nut runner, and a fastened member is fastened with the bolt. Herein, the bolt is fastened up to a predetermined snug torque Ts and then the bolt is further fastened by a specified angle from a bolt angle corresponding to the snug torque Ts (torque+angle method). If the torque method (the method of managing bolt fastening with the fastening torque which utilizes the proportional relationship between the fastening torque and the fastening shaft force (in the elasticity area of bolt)), which is shown in FIG. 11, was applied, the fastening shaft force of the bolt would varies improperly according to the coefficient of friction between the screw face and the seat face of the bolt. The torque+angle method, however, uses addi...

embodiment 2

[0063]Hereinafter, a bolt fastening method according to a second embodiment will be described. Herein, like the above-described first embodiment, the torque+angle method is applied in which the difference Δθ, and the addition of this difference Δθb to the base angle θk is set as the new specified angle. According to the bolt fastening method according to the second embodiment, however, the fastening angles of a plurality of bolts to be fastened at the point where the fastening torque of each bolt has reached the snug torque Ts are detected, an average angle θave of the obtained fastening angles of the plurality of bolts is obtained, and the average angle θave is used as the standard angle. Thereby, the correction of the fastening shaft force of the bolts can be properly achieved regardless of presence of the plural bolts to be fastened, so that the fastening shaft forces of the plural bolts can be made uniform. In this case, part of all of the bolts which are to be fastened can be s...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Angleaaaaaaaaaa
Torqueaaaaaaaaaa
Login to View More

Abstract

A bolt is fastened up to a predetermined snug torque Ts and then the bolt is further fastened by a specified angle θt from a bolt angle corresponding to the snug torque Ts. Herein, in order to obtain excess and deficiency of the fastening angle up to the snug torque Ts, an angle-variation difference between the fastening angle θsb of the bolt at the point where the fastening torque of the bolt has reached the snug torque Ts and a standard angle θsa of the snug torque Ts is calculated. And, addition of this angle-variation difference to a base angle is set as the new specified angle θt to correct the excess and deficiency. Accordingly, variation in a fastening shaft force can be restrained even if the snug torque is set at a relatively high torque in the bolt fastening method using the torque+angle method.

Description

BACKGROUND OF THE INVENTION[0001]The present invention relates to a bolt fastening method and apparatus.[0002]A bolt fastening method (torque method) in which the bolt fastening management is conducted by utilizing the proportional relationship between the fastening torque T and the fastening shaft force (in the bolt elasticity area) is known. While this torque method is superior in work efficiency, there may occur a large variation in the fastening shaft force according to the coefficient of friction between the screw face and the seat face of the bolt (see FIG. 11). Accordingly, another bolt fastening method (torque+angle method), which is shown in US Patent Application Publication No. 2006 / 0218768, has been used, in which the bolt is fastened up to the predetermined snug torque Ts (a fastening torque at a start point for an effective and substantial fastening) and then the bolt is further rotated (fastened) by a specified angle θk from the standard bolt angle corresponding to the...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B25B23/14
CPCB23P19/066Y10T29/49767Y10T29/49766B25B23/14
Inventor MAKIMAE, TATSUMIFUJII, YUTAKA
Owner MAZDA MOTOR CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products