Mesostructured aluminosilicate material

a technology of aluminosilicate and aluminosilicate, which is applied in the direction of silicates, physical/chemical process catalysts, silicon compounds, etc., can solve the problems of difficult to obtain, difficult to incorporate large quantities of aluminium, and not all of the reagents

Inactive Publication Date: 2006-12-28
INST FR DU PETROLE
View PDF11 Cites 39 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

The hydrothermal stability and acid-basic properties developed by such aluminosilicates, however, did not allow them to be used on an industrial scale in refining processes or in petrochemistry, which has steadily led to the use of novel templates such as block copolymer type amphiphilic macromolecules, these latter producing mesostructured materials having a generally hexagonal, cubic or lamellar structure, with uniform sized pores in the range 4 to 50 nm and amorphous walls with a thickness in the range 3 to 7 nm.
Further, synthesis of such materials obtained by precipitation necessitates a step for autoclave ageing and not all of the reagents are integrated into the products in stoichiometric quantities as they can be found in the supernatant.
Low values for the molar ratio Si / Al are, however, difficult to obtain as it is difficult to incorporate large quantities of aluminium into the material using such particular operating procedures (D Zaho, J Feng, Q Huo, N Melosh, G H Fredrickson, B F Chmelke, G D Stucky, Science, 1998, 279, 548; Y-H Yue, A Gedeon, J-L Bonardet, J B d'Espinose, N Melosh, J Fraissard, Stud Surf Sci Catal 2000, 129, 209).

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Mesostructured aluminosilicate material
  • Mesostructured aluminosilicate material

Examples

Experimental program
Comparison scheme
Effect test

example 1 (

Invention)

Preparation of an aluminosilicate material with a Si / Al ratio of 5

[0032] 1.03 g of aluminium trichloride was added to a solution containing 30 g of ethanol, 14.5 g of water, 0.036 ml of HCl and 1.4 g of the surfactant CTAB. The ensemble was left at ambient temperature, with stirring, until the aluminic precursor had completely dissolved. 3.59 g of tetraethylorthosilicate (TEOS) was then added. After stirring for 10 min at ambient temperature, the ensemble was sent to the atomization chamber of an aerosol generator as described above and the solution was atomized in the form of fine droplets under the action of the vector gas (dry air) introduced under pressure (P=1.5 bars) as described above. The droplets were dried using the protocol described in the invention described above. The temperature of the drying oven was fixed at 350° C. The harvested powder was then calcined in air for 5 h at T=550° C. The solid was characterized by small angle XRD (FIG. 1), by the nitrogen a...

example 2 (

Invention)

Preparation of an aluminosilicate material with a Si / Al ratio of

[0033] 0.52 g of aluminium trichloride was added to a solution containing 30 g of ethanol, 14.7 g of water, 0.036 ml of HCl and 1.4 g of the surfactant P123. The ensemble was left at ambient temperature, with stirring, until the aluminic precursor had completely dissolved. 4.09 g of tetraethylorthosilicate (TEOS) was then added. After stirring for 18 hours at ambient temperature, the ensemble was sent to the atomization chamber of an aerosol generator and the solution was atomized in the form of fine droplets under the action of the vector gas (dry air) introduced under pressure (P=1.5 bars). The droplets were dried using the protocol described in the invention described above. The temperature of the drying oven was fixed at 350° C. The harvested powder was then calcined in air for 5 h at T=550° C. The solid was characterized by small angle XRD (FIG. 4), by the nitrogen adsorption isotherm (FIG. 5: the indica...

example 3 (

Invention)

Preparation of an aluminosilicate material with a Si / Al ratio of 3

[0034] 1.56 g of aluminium trichloride was added to a solution containing 30 g of ethanol, 14.2 g of water, 0.036 ml of HCl and 1.4 g of the surfactant P123. The ensemble was left at ambient temperature, with stirring, until the aluminic precursor had completely dissolved. 3.14 g of tetraethylorthosilicate (TEOS) was then added. After stirring for 18 hours at ambient temperature, the ensemble was sent to the atomization chamber of an aerosol generator as described above and the solution was atomized in the form of fine droplets under the action of the vector gas (dry air) introduced under pressure (P=1.5 bars). The droplets were dried using the protocol described in the invention described above. The temperature of the drying oven was fixed at 350° C. The harvested powder was then calcined in air for 5 h at T=550° C. The solid was characterized by small angle XRD (FIG. 7), by the nitrogen adsorption isother...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
diameteraaaaaaaaaa
thicknessaaaaaaaaaa
pore sizeaaaaaaaaaa
Login to view more

Abstract

A mesostructured aluminosilicate material is described, constituted by at least two spherical elementary particles, each of said spherical particles being constituted by a matrix based on silicon oxide and aluminium oxide, having a pore size in the range 1.5 to 30 nm, a Si / Al molar ratio of at least 1, having amorphous walls with a thickness in the range 1 to 20 nm, said spherical elementary particles having a maximum diameter of 10 μm. A process for preparing said material and its application in the fields of refining and petrochemistry are also described.

Description

[0001] The present invention relates to the field of mesostructured aluminosilicate materials with a high aluminium content. It also relates to the preparation of said materials which are obtained using the “aerosol” synthesis technique. The structural and textural properties of the materials of the invention and their acid-base properties render them particularly suitable for applications in the refining and petrochemicals fields. PRIOR ART [0002] Novel synthesis strategies for producing materials with a porosity which is well defined over a very broad range, from microporous materials to macroporous materials via materials with a hierarchical porosity, i.e. with pores of various sizes, have been under development in the scientific community since the middle of the 1990s (G J de A A Soler-Illia, C Sanchez, B Lebeau, J Patarin, Chem Rev 2002, 102, 4093). Materials are obtained in which the pore size is controlled. In particular, the development of syntheses using “mild chemistry” me...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C01B33/26B01J13/04B01J29/04B01J35/00B01J35/02B01J35/10C01B39/02C01G49/00
CPCB01J29/041B01J35/0013B01J35/023C01B39/02B01J35/1023B01J37/0045B01J35/10
Inventor CHAUMONNOT, ALEXANDRACOUPE, AURELIESANCHEZ, CLEMENTEUZEN, PATRICKBOISSIERE, CEDRICGROSSO, DAVID
Owner INST FR DU PETROLE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products