Microbial degradation of water-borne paint containing high levels of organic solvent

Inactive Publication Date: 2008-08-07
ATOTECH DEUT GMBH
View PDF26 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0014]The present inventors have discovered that, while prior art microorganism based paint detackification processes have been able to carry out the function of paint detackification and COD reduction in the recirculating Water, in operations in which significantly higher concentrations of organic solvents are used, the microorganisms have been ineffective in reducing the COD. The present inventors have discovered that, contrary to prior art practices, the nutrients normally present ma

Problems solved by technology

The present inventors have discovered that, while prior art microorganism based paint detackification processes have been able to carry out the function of paint detackification and COD reduction in the recirculating Water, in operations in which significantly higher concentrations of orga

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Microbial degradation of water-borne paint containing high levels of organic solvent
  • Microbial degradation of water-borne paint containing high levels of organic solvent
  • Microbial degradation of water-borne paint containing high levels of organic solvent

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0064]Overspray organic solvent-laden water-borne paint from an automobile factory which uses excessive solvent in their spray operation is treated by addition of the fungi C. elegans and monitored over a period of time for chemical oxygen demand (COD) in an attempt to reduce the COD of the water. The COD of the water is not significantly reduced.

examples 2-9

[0065]Overspray organic solvent-laden water-borne paint from Example 1 are treated by a variety of means and the COD determined. Example 2 is substantially the same as Example 1 above, so that the water contains the fungi C. elegans. In examples 3-5, the water contains the fungi C. elegans to which is added the bacterial species B. subtilis, P. fluorescens or a mixture of is these two bacterial species, as identified in the table below. In examples 6, 7, 8, and 9, in addition to the foregoing microorganisms (both fungal and bacterial), two micronutrients are added, in the amounts indicated in the table below: nitrogen, in the form of urea, and phosphorous, in the form of phosphoric acid. As shown in the table below, the reduction in COD is greatly improved in these examples, as compared to the examples 3-5 in which no additional micronutrients are added. Thus, the unexpected benefit of a significantly improved reduction in the COD of the water in the system is shown. This effect was...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method for degrading, detackifying and reducing solvent in water comprising organic solvent-laden water-borne paint that comprises adding to the water an effective degrading, detackifying and/or solvent-reducing amount of at least one microorganism culture and sufficient micronutrients to sustain the growth of the at least one microorgansim culture and to reduce solvent content of the water. A method of reducing chemical oxygen demand in water comprising organic solvent-laden water-borne paint, wherein the water contains an excess amount of organic solvent from one or both of paint spray operations and paint spray nozzle cleaning operations, the method comprising adding to the water an effective degrading and detackifying amount of at least one microorganism culture and micronutrients to sustain the growth of the at least one microorgansim culture, whereby chemical oxygen demand in the water is reduced by at least 50% relative to the same system without adding the micronutrients.

Description

TECHNICAL FIELD[0001]This invention relates to a method for the degradation of water-borne paint containing high levels of organic solvent. More particularly, the invention relates to a novel biological method for the degradation of water-borne paint, its application for paint detackification, and reduction of chemical oxygen demand, in which the water-borne paint contains high levels of organic solvent.BACKGROUND OF THE INVENTION[0002]The detackification of sticky materials in aqueous systems is a common problem in many industrial operations. Particularly in the automobile industry, the products are coated or painted in enclosed areas referred to as paint spray booths. A significant portion of the paint is oversprayed, that is, not transferred to the object being coated. Such waste paint is generally referred to as oversprayed paint, and is usually collected in water for subsequent waste treatment.[0003]Paint is a tacky material and its tends to coagulate and adhere to the spray bo...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C02F3/34
CPCC02F2103/14C02F3/34
Inventor ALMADIDY, AMERLAVAYSSIERRE, NATACHA
Owner ATOTECH DEUT GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products