Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Devices and methods for delivery of a therapeutic agent through a pneumostoma

a technology of pneumostoma and therapeutic agent, which is applied in the direction of respirator, catheter, wound drain, etc., can solve the problems of increased exhalation work, significant underdiagnosis of psoriasis, and hyperinflation of the lung, and achieve the effect of stabilizing the artificial apertur

Inactive Publication Date: 2009-08-20
PORTAERO
View PDF9 Cites 36 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0037]In view of the disadvantages of the state of the art, Applicants have developed a method for treating COPD in which an artificial passageway is made through the chest wall into the lung. An anastomosis is formed between the artificial passageway and the lung by creating a pleurodesis between the visceral and parietal membranes surrounding the passageway as it enters the lung. The pleurodesis prevents air from entering the pleural cavity and causing a pneumothorax (deflation of the lung due to air pressure in the pleural cavity). The pleurodesis is stabilized by a fibrotic healing response between the membranes. The artificial passageway through the chest wall also becomes epithelialized. The result is a stable artificial aperture through the chest wall which communicates with the parenchymal tissue of the lung.
[0038]The artificial aperture into the lung through the chest is referred to herein as a pneumostoma. A pneumostoma provides an extra pathway that allows air to exit the lung while bypassing the natural airways which have been impaired by COPD and emphysema. By providing this ventilation bypass, the pneumostoma allows the stale air trapped in the lung to escape from the lung thereby shrinking the lung (reducing hyperinflation). By shrinking the lung, the ventilation bypass reduces breathing effort (reducing dyspnea), allows more fresh air to be drawn in through the natural airways and increases the effectiveness of all of the tissues of the lung for gas exchange. Increasing the effectiveness of gas exchange allows for increased absorption of oxygen into the bloodstream and also increased removal of carbon dioxide. Reducing the amount of carbon dioxide retained in the lung reduces hypercapnia which also reduces dyspnea. The pneumostoma thereby achieves the advantages of lung volume reduction surgery without surgically removing or sealing off a portion of the lung.
[0039]In accordance with an embodiment, the present invention provides a pneumostoma management system including a pneumostoma management device and a drug delivery device which interacts with one or more components of the pneumostoma management device to safely and effectively apply therapeutic agent delivery to a pneumostoma. The drug delivery device delivers a therapeutic agent aerosol or therapeutic agent powder deep into the parenchymal tissue of the lung. Therapeutic agents are not lost to filtration in the respiratory tract and thus the delivery is less variable. As a consequence, dosage is more controlled and can be reduced compared to dosage required by other delivery methods such as oral or inhaled.
[0040]In accordance with a general embodiment, the present invention provides a drug delivery device and method to safely and effectively apply therapeutic agent delivery to a pneumostoma.
[0041]In accordance with one embodiment, the present invention provides a pneumostoma management system which includes a partially-implantable pneumostoma vent, a chest mount and a drug delivery device. The drug delivery device attaches to the chest mount to safely and effectively apply therapeutic agent delivery to a pneumostoma.

Problems solved by technology

However an additional ten million adults have evidence of impaired lung function indicating that COPD may be significantly underdiagnosed.
This increases the work of exhaling and leads to hyperinflation of the lung.
When the lungs become hyperinflated, forced expiration cannot reduce the residual volume of the lungs because the force exerted to empty the lungs collapses the small airways and blocks air from being exhaled.
With continued exposure to cigarettes or noxious particles, the disease progresses and individuals with COPD increasingly lose their ability to breathe.
Ultimately, severe emphysema may lead to severe dyspnea, severe limitation of daily activities, illness and death.
However, many patients are not candidates for such a taxing procedure.
However, these proposals remain significantly invasive and are still in clinical trails.
None of the surgical approaches to treatment of COPD has been widely adopted.
However, delivery of therapeutic agents into lung tissue is difficult in asthma and COPD treatment because some patients cannot take the deep breathe necessary to inhale an therapeutic agent aerosol or therapeutic agent powder deep into the lung.
Also many of the inhaler device are difficult to operate.
Thus inhaled therapeutic agent delivery is difficult of impossible in the very patients that would benefit most.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Devices and methods for delivery of a therapeutic agent through a pneumostoma
  • Devices and methods for delivery of a therapeutic agent through a pneumostoma
  • Devices and methods for delivery of a therapeutic agent through a pneumostoma

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0074]The following description is of the best modes presently contemplated for practicing various embodiments of the present invention. The description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be ascertained with reference to the claims. In the description of the invention that follows, like numerals or reference designators will be used to refer to like parts or elements throughout. In addition, the first digit of a reference number identifies the drawing in which the reference number first appears.

Pneumostoma Formation and Anatomy

[0075]FIG. 1A shows the chest of a patient identifying alternative locations for creating a pneumostoma that may be managed using the system of the present invention. A first pneumostoma 110 is shown on the front of the chest 100 over the right lung 101 (shown in dashed lines). The pneumostoma is preferably positioned over the third i...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A pneumostoma management system includes a pneumostoma management device for maintaining the patency of a pneumostoma and a drug delivery device for pneumostoma care. The drug delivery device includes a therapeutic agent dispenser for supplying a therapeutic agent and a propellant at positive pressure, a tube for entering the pneumostoma and a limiting device for limiting the depth of insertion of the tube into a pneumostoma. The drug delivery device may be used to introduce therapeutic agents into the pneumostoma for direct treatment of the pneumostoma, treatment of the lung by way of collateral ventilation, and / or treatment of non-lung tissues by diffusion into the bloodstream.

Description

CLAIM TO PRIORITY[0001]This application claims priority to all of the following applications including: U.S. Provisional Application No. 61 / 029,830, filed Feb. 19, 2008, entitled “ENHANCED PNEUMOSTOMA MANAGEMENT DEVICE AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06013US0);[0002]U.S. Provisional Application No. 61 / 032,877, filed Feb. 29, 2008, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06001US0);[0003]U.S. Provisional Application No. 61 / 038,371, filed Mar. 20, 2008, entitled “SURGICAL PROCEDURE AND INSTRUMENT TO CREATE A PNEUMOSTOMA AND TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE” (Attorney Docket No. LUNG1-06000US0);[0004]U.S. Provisional Application No. 61 / 082,892, filed Jul. 23, 2008, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM HAVING A COSMETIC AND / OR PROTECTIVE COVER” (Attorney Docket No. LUNG1-06008US0);[0005]U.S. Provisional Application No....

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61M15/00A61M31/00A61F2/958
CPCA61B2017/00809A61M16/202A61M1/04A61M11/00A61M13/00A61M15/0085A61M15/009A61M15/02A61M16/0816A61M25/02A61M25/04A61M25/10A61M39/02A61M39/0247A61M2039/0252A61M2039/0276A61M2202/0208A61M2202/025A61M2202/064A61M2205/7518A61M2205/7536A61M27/00A61K9/007A61M2205/075A61M11/005A61M11/042A61M16/0833
Inventor TANAKA, DONPLOUGH, DAVID C.WIESMAN, JOSHUA P.
Owner PORTAERO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products