Personal and server computers having microchips with multiple processing units and internal firewall

a technology of microchips and processing units, applied in the direction of multi-programming arrangements, program control, instruments, etc., can solve the problems of total loss, nearly all pc's are essentially idle during roughly all of their useful life, and typical personal computers are already so fast that their microprocessors are essentially idle, etc., to achieve limitless flexibility, broad bandwidth connection, and limited performance.

Inactive Publication Date: 2010-01-14
ELLIS III FRAMPTON ERROLL
View PDF17 Cites 33 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0020]However, the confluence of all three of the established major trends summarized above—supercomputer-like personal computers, the spread of parallel processing using personal computer microprocessors (particularly massively parallel processing), and the enormous increase in network communications bandwidth—will make possible in the near future a surprising solution to the hugely excessive idleness problem of personal computers (and to the problematic possible end of Moore's Law), with very high potential economic savings.
[0021]The solution is use those mostly idle PC's (or their equivalents or successors) to build a parallel or massively parallel processing computer utilizing a very large network like the Internet or, more specifically, like the World Wide Web (WWW), or their equivalents or eventual successors like the MetaInternet (and including Internet II, which is under development now and which will utilize much broader bandwidth and will coexist with the Internet, the structure of which is in ever constant hardware and software upgrade and including the SuperInternet based on essentially all optical fiber transmission) with extremely broad bandwidth connections and virtually unlimited data transmission speed.
[0022]The prime characteristic of the Internet is of course the very large number of computers of all sorts already linked to it, with the future potential for effectively universal connection; it is a network of networks of computers that provides nearly unrestricted access (other than cost) worldwide. The soon-to-be available very broad bandwidth of network communications can be used to link personal computers externally in a manner at least equivalent to the faster internal system buses of the personal computers, so that no external processing constraint will be imposed on linked personal computers by data input or output, or throughput; the speed of the microprocessor itself will be the only processing constraint of the system, other than the internal system bus design.

Problems solved by technology

Despite these tremendous improvements anticipated in the future, the unfortunate present reality is that a typical personal computer (PC) is already so fast that its microprocessor is essentially idle during most of the time the PC is in actual use and that operating time itself is but a small fraction of those days the PC is even in any use at all.
The reality is that nearly all PC's are essentially idle during roughly all of their useful life.
Given the fact that the reliability of PC's is so exceptionally high now, with the mean time to failure of all components typically several hundred thousand hours or more, the huge idle time of PC's represents a total loss; given the high capital and operating costs of PC's, the economic loss is very high.
PC idle time does not in effect store a PC, saving it for future use, since the principle limiting factor to continued use of today's PC's is obsolescence, not equipment failure from use.
Moreover, there is growing concern that Moore's Law, which as noted above holds that the constant miniaturization of circuits results in a doubling of computing power every 18 months, cannot continue to hold true much longer.
Indeed, Moore's Law may now be nearing its limits for silicon-based devices, perhaps by as early as 2004, and no new technologies have yet emerged that currently seem with reasonable certainty to have the potential for development to a practical level by then, although many recent advances have the potential to maintain Moore's Law.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Personal and server computers having microchips with multiple processing units and internal firewall
  • Personal and server computers having microchips with multiple processing units and internal firewall
  • Personal and server computers having microchips with multiple processing units and internal firewall

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0048]The new network computer will utilize PC's as providers of computing power to the network, not just users of network services. These connections between network and personal computer are enabled by a new form of computer / network financial structure that is rooted on the fact that economic resources being provided the network by PC owners (or leaser) are similar in value to those being provided by the network provider providing connectivity.

[0049]Unlike existing one way functional relationships between network providers such as internet service providers (often currently utilizing telecommunications networks for connectivity) and PC users, wherein the network provider provides access to a network like the Internet for a fee (much like cable TV services), this new relationship would recognize that the PC user is also providing the network access to the user's PC for parallel computing use, which has a similar value. The PC thus both provides and uses services on the network, alt...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

This invention generally relates to one or more computer networks having computers like personal computers or network servers with microprocessors linked by broadband transmission means and having hardware, software, firmware, and other means such that at least one parallel processing operation occurs that involve at least two computers in the network. More particularly, this invention relates to one or more large networks composed of smaller networks and large numbers of computers connected, like the Internet, wherein more than one separate parallel processing operation involving more than one different set of computers occurs simultaneously and wherein ongoing processing linkages can be established between virtually any microprocessors of separate computers connected to the network. Still more particularly, this invention relates to business arrangements enabling the shared used of network microprocessors for parallel and other processing, wherein personal computer owners provide microprocessor processing power to a network, preferably for parallel processing, in exchange for network linkage to other personal and other computers supplied by network providers, including linkage to other microprocessors for parallel or other processing; the basis of the exchange between owners and providers being whatever terms to which the parties agree, subject to governing laws, regulations, or rules, including payment from either party to the other based on periodic measurement of net use or provision of processing power.

Description

BACKGROUND OF THE INVENTION[0001]This invention generally relates to one or more computer networks having computers like personal computers or network computers such as servers with microprocessors preferably linked by broadband transmission means and having hardware, software, firmware, and other means such that at least two parallel processing operations occur that involve at least two sets of computers in the network or in networks connected together, a form of metacomputing. More particularly, this invention relates to one or more large networks composed of smaller networks and large numbers of computers connected, like the Internet, wherein more than one separate parallel or massively parallel processing operation involving more than one different set of computers occurs simultaneously. Even more particularly, this invention relates to one or more such networks wherein more than one (or a very large number of) parallel or massively parallel microprocessing processing operations...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): G06F15/16G06F9/50H04L29/06H04L29/08
CPCG06F9/5072H04L63/02H04L63/0209G06F2209/509H04L67/10H04L69/329H04L67/02
Inventor ELLIS, III, FRAMPTON ERROLL
Owner ELLIS III FRAMPTON ERROLL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products