Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Compressor

Inactive Publication Date: 2011-05-26
LG ELECTRONICS INC
View PDF47 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0028]The thus-construed compressor according to the present invention can enables a compact design because a compression space within the compressor is formed by a rotor of an electric motor part driving the compressor by installing a compression mechanism part and the electric motor part in a radius direction, thus minimizing the height of the compressor and reducing the size, and can significantly decrease a difference in relative speed between the first rotary member and the second rotary member and hence minimize a resulting friction loss because a refrigerant is compressed in the compression space between the first and second rotary members as the first rotary member rotates along with the second rotary member by transmitting a rotational force to the second rotary member, thus maximizing the efficiency of the compressor.
[0029]Furthermore, since the vane partitions the compression space while reciprocating between the first rotary member and the second rotary member without being in sliding contact with first rotary member or second rotary member, the leakage of the refrigerant in the compression space can be minimized by means of a simple structure, thereby maximizing the efficiency of the compressor.

Problems solved by technology

While the reciprocating compressor has superior mechanical efficiency, such a reciprocating motion causes serious vibration and noise problems.
Between the components which are thus in sliding contact, a high relative speed exists, and hence a friction loss occurs.
This leads to a degradation of the efficiency of the compressor.
Further, there is always the possibility of refrigerant leakage on a contact surface between the vane and the roller which are in sliding contact, thus reducing mechanical reliability.
Therefore, this patent still has the problem of the conventional rotary compressor.
That is to say, the rotary compressor according to this publication is problematic in that the height of the compressor is inevitably large because a separate electric motor part has to be laminated in a height direction relative to a compression mechanism part including a rotor, a cylinder, and a vane, thereby making a compact design difficult.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compressor
  • Compressor
  • Compressor

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0044]the compressor according to the present invention comprises, as shown in FIG. 1, a hermetically sealed container 110, a stator 120 installed inside the hermetically sealed container 110, a first rotary member 130 rotatably installed inside the stator 120 by a rotational electromagnetic field from the stator 120, a second rotary member 140 for compressing a refrigerant between the first and second rotary members 130 and 140 while rotating inside the first rotary member 130 upon receipt of a rotational force from the first rotary member 130, and first and second bearings 150 and 160 for rotatably supporting the first rotary member 130 and the second rotary member 140 on the inside of the hermetically sealed container 110. An electric motor part for providing electric power by an electrical action employs a kind of BLDC motor including a stator 120 and a first rotary member 130, and a compression mechanism part for compressing the refrigerant by a mechanical action includes a fir...

second embodiment

[0072]FIG. 12 is a side cross sectional view showing the compressor according to the present invention.

[0073]As shown in FIG. 12, the second embodiment of the compressor according to the present invention comprises a hermetically sealed container 210, a stator 220 installed inside the hermetically sealed container 210, a first rotary member 230 rotatably installed inside the stator 220 by interaction with the stator 220, a second rotary member 240 for compressing a refrigerant between the first and second rotary members while rotating inside the first rotary member upon receipt of a rotational force from the first rotary member 230, a muffler 250 for guiding the suction / discharge of the refrigerant to the compression space P between the first and second rotary members 230 and 240, and a bearing 260 for rotatably supporting the first rotary member 230 and the second rotary member 240 inside the hermetically sealed container 210 and a mechanical seal 270. In the second embodiment as w...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The present invention relates to a rotary compressor comprising an electric motor part for supplying electric power and a compression mechanism part for compressing a refrigerant while first and second rotary members (130,140) rotate upon receipt of the electric power from the electric motor part, and more particularly to, a compressor which enables a compact design by forming a compression space within the compressor by a rotor of an electric motor part driving the compressor, maximizes compression efficiency by minimizing friction loss between rotating elements within the compressor, and has a structure capable of minimizing leakage of refrigerant within the compression space.

Description

TECHNICAL FIELD[0001]The present invention relates to a compressor, and more particularly, to a compressor which enables a compact design by forming a compression space within the compressor by a rotor of an electric motor part driving the compressor, maximizes compression efficiency by minimizing friction loss between rotating elements within the compressor, and has a structure capable of minimizing leakage of refrigerant within the compression space.BACKGROUND ART[0002]In general, a compressor is a mechanical apparatus for compressing the air, refrigerant or other various operation gases and raising a pressure thereof, by receiving power from a power generation apparatus such as an electric motor or turbine. The compressor has been widely used for an electric home appliance such as a refrigerator and an air conditioner, or in the whole industry.[0003]The compressors are roughly classified into a reciprocating compressor in which a compression space for sucking or discharging an op...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): F25B43/00F25B1/00
CPCF04C18/32F04C23/008F04C15/0007F04C2240/603F04C18/322F04C29/0085F01C21/0809F04C18/3443F04C18/348F04C18/3564F04C27/008F04C29/0057F04C29/023F04C18/344F04C18/356F04C29/00
Inventor LEE, KANGWOOKSHIN, JIN-UNGKWON, YONGCHOLLEE, GEUN-HYOUNG
Owner LG ELECTRONICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products