Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Reconfigurable MIMO antenna for vehicles

a technology of multi-input and multi-output, which is applied in the direction of movable body antenna adaptation, electrical apparatus, independent non-interacting antenna combinations, etc., can solve the problems of unbalanced antenna mounting and unbalanced antenna mounting, and achieve high performance

Inactive Publication Date: 2015-10-29
SMART ANTENNA TECH
View PDF7 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The invention provides a reconfigurable antenna that can be easily integrated into a roof-mounted vehicle antenna housing. It has a small and low profile, and is relatively cheap to manufacture. The antenna also offers high performance and a wide frequency covering range with high isolation between each radiator. The balanced and unbalanced antennas have substantially centrally located feed lines, which ensure high performance.

Problems solved by technology

The unbalanced antenna may be mounted such that it extends substantially perpendicularly to the triangular planar element.
Alternatively, the unbalanced antenna may be mounted such that it extends substantially parallel to the triangular planar element.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Reconfigurable MIMO antenna for vehicles
  • Reconfigurable MIMO antenna for vehicles
  • Reconfigurable MIMO antenna for vehicles

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0063]With reference to FIGS. 1A, 1B and 1C there is shown an antenna 10 according to the present invention, provided on a supporting substantially triangular planar PCB substrate 12. The antenna 10 comprises a balanced antenna 14 mounted on a first surface 16 of the triangular PCB 12 and an unbalanced antenna 18 in the form of a non-resonant element mounted on a second PCB substrate 20, which extends substantially perpendicularly from the first surface 16 of the triangular PCB 12. Both the balanced antenna 14 and the unbalanced antenna 18 are located towards the same end 22 of the triangular PCB 12.

[0064]The end 22 of the triangular PCB 12 constitutes a base of the triangular substrate, which further comprises a central axis of symmetry 24 and two sides 26 which are substantially equal in length. The second PCB 20 is located along the central axis 24 in the shape of a quarter-ellipse having a curved top surface 28 and a perpendicular end surface 30, which is located towards the bas...

third embodiment

[0097]FIGS. 14A and 14B show an antenna 90 according to the present invention. The antenna 90 is substantially similar to that shown in FIGS. 8A and 8B except for the structure of the unbalanced antenna 92. More specifically, the non-resonant element 94, operating as the Primary Antenna, is etched onto the second surface 48 of the triangular PCB 12 in the area enclosed by the balanced antenna 14. Accordingly, the ground plane 68 only extends as far as the balanced antenna 14 and a gap 96 is provided between the ground plane 68 and the non-resonant element 94. In this embodiment, the feed lines 46 for the balanced antenna 14 extend centrally along the first surface 16 of the triangular PCB 12 before connecting to the ground plane 68 beneath. Accordingly, the feed points of each of the balanced antenna 14 and the unbalanced antenna 90 are close. However, high isolation can be achieved by ensuring that the balanced antenna 14 and the unbalanced antenna 90 have a maximum 90 degree phase...

fourth embodiment

[0113]FIG. 20 shows a top perspective view of an antenna 110 according to the present invention. The antenna 110 is substantially similar to that shown in FIGS. 14A and 14B except that the supporting PCB 112 comprises a triangular planar element 114 and a rectangular planar element 116. The triangular planar element 114 comprises a base 118, a central axis of symmetry 120 and two sides 122 which are substantially equal in length. The rectangular planar element 116 extends from the base 118 to the end 22 of the antenna 110. A balanced antenna 124, similar to the balanced antenna 14, is provided at the end 22 and conforms to the outer shape of the rectangular planar element 116, with the area under the L-shaped arms 126 of the balanced antenna 124 cut-away for improved performance. Thus, in this embodiment, the L-shaped arms 126 each have an internal angle of 90 degrees.

[0114]Furthermore, the balanced antenna 124 is mounted to the rectangular planar element 116 by foam supports or the...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The present invention discloses are configurable MIMO (Multiple-Input Multiple-Output) antenna for vehicles. The antenna comprises a balanced antenna and an unbalanced antenna mounted on a supporting substrate. Both the balanced antenna and the unbalanced antenna are located towards the same end of the substrate and the substrate comprises a substantially triangular planar element.

Description

FIELD OF THE INVENTION[0001]The invention relates to a reconfigurable MIMO (Multiple-Input Multiple-Output) antenna for vehicles. Particularly, but not exclusively, the invention relates to a reconfigurable MIMO antenna for mounting on a vehicle roof.BACKGROUND TO THE INVENTION[0002]Multiple-input multiple-output (MIMO) wireless systems exploiting multiple antennas as both transmitters and receivers have attracted increasing interest due to their potential for increased capacity in rich multipath environments. Such systems can be used to enable enhanced communication performance (i.e. improved signal quality and reliability) by use of multi-path propagation without additional spectrum requirements. This has been a well-known and well-used solution to achieve high data rate communications in relation to 2G and 3G communication standards. For indoor wireless applications such as router devices, external dipole and monopole antennas are widely used. In this instance, high-gain, omni-di...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): H01Q1/27H01Q9/16H01Q21/28
CPCH01Q1/27H01Q9/16H01Q21/28H01Q1/241H01Q1/32H01Q1/3275
Inventor HU, ZHEN HUAHALL, PETERGARDNER, PETER
Owner SMART ANTENNA TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products